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Abstract—The recognition of places that have already been
visited is a fundamental requirement for a mobile robot.
This particularly concerns the detection of loop closures while
mapping environments as well as the global localization w.r.t.
to a prior map. This paper introduces a novel solution to place
recognition with 2D LIDAR scans. Existing approaches utilize
descriptors covering the local appearance of discriminative
features within a bag-of-words (BOW) framework accompanied
with approximate geometric verification. Though limiting the
set of potential matches their performance crucially drops for
increasing number of scans making them less appropriate for
large scale environments. We present Geometrical Landmark
Relations (GLARE), which transform 2D laser scans into
pose invariant histogram representations. Potential matches
are found in sub-linear time using an efficient Approximate
Nearest Neighbour (ANN) search. Experimental results obtained
from publicly available datasets demonstrate that GLARE
significantly outperforms state-of-the-art approaches in place
recognition for large scale outdoor environments, while achiev-
ing similar results for indoor settings. Our Approach achieves
recognition rates of 93% recall at 99% precision for a dataset
covering a total path of about 6.5 km.

I. INTRODUCTION

Place recognition is an essential capability of a mobile
robot in order to fulfill high-level tasks. In particular, it
is necessary for detecting loop closures in SLAM as well
as the global localization with respect to a prior map. In
addition to these common applications, place recognition
contributes to a number of further tasks, as for instance the
merging of datasets collected during several surveys. Places
are associated either in a pure topological or metric manner.
The latter estimates a relative transformation of the query
scan with respect to the matching one, whereas appearance
based approaches solely match nodes of topological graphs
[1]. While vision-based solutions to place recognition have
been quite exhaustively investigated, only little attention has
been paid to the capabilities of 2D range data. This is
obviously due to the fact that, in contrast to images, 2D
range scans only describe a relatively small subspace of the
surrounding environment and hence provide less information
to distinguish different places. Exhaustive matching of in-
vidual laser scans is impractical in terms of time complexity
when looking at large scale environments making descriptive
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Figure 1. A graph of geometrical relations of co-occuring landmarks
(blue dots) in a 2D range scan (black dots) is shown (triangle: robot pose).
The relations are captured into pose-invariant scan signatures which are
efficiently matched against the entire signature database.

place signatures and efficient retrieval algorithms indispens-
able. Similarly to vision-based methods, the extraction of
local interest points serving as landmarks is beneficial. In
existing approaches these landmarks are assigned descriptors
capturing their local surroundings. As usual in typical bag-of-
words (BOW) techniques these descriptors can be quantized
to words enabling laser scans to be represented by histograms
of word occurrences. While achieving promising results in
visual applications [1], BOW performs rather poor in con-
junction with 2D range data [2], particulary when looking at
outdoor environments. Inspired by the vision community [3],
Tipaldi et al. introduced Geometrical FLIRT phrases (GFP)
allowing approximate geometric verification by preserving
the clock-wise order of observed words [2]. Although GFP
reduces the number of potential place correspondences, the
number of required full geometric verfications on outdoor
sequences increases with the size of the environment. This
paper introduces Geometrical Landmark Relations (GLARE)
explicitly taking into account relative metric displacements
of landmarks observed in individual range scans. Using our
approach we are able to achieve a recall of 93% at 99%
precision on a 6.5 km long dataset which outperforms GFPs
in both efficiency and accuracy.

II. RELATED WORK

This section presents an overview of existing work dealing
with place recognition. First, it is shown how GLARE is



related to the vision-based approaches. Subsequently our
approach is justified against prior work in range based place
recognition.

A. Spatial relations in vision-based place recognition

There exists a large amount of work dedicated to place
recognition in the computer vision literature. A survey of
place recognition in visual SLAM, i.e. loop closure detection,
is given by [4]. Matching of geometric constraints within
visual recognition tasks has recently drawn potential interest
again. In [5] Johns and Yang propose to quantize the rel-
ative orientations and distances of co-occurring features in
the image coordinate frame. Also Cho et al. incorporates
spatial relationships between keypoints in a graph-based
object recognition system. Clemente et al. proposes to use
relative distances of observed features as an evaluation step
when matching submaps [6]. However, the complexity of the
matching procedure limits its use for rather small numbers
of submaps.

B. Place recognition based on 2D range scans

The related work on place recognition utilizing 2D lidar
scans is rather small compared to those using camera images.
Bosse and Zlot analysed several detectors and descriptors for
local keypoints aggregated from sequential 2D range scans
into submaps. The recognition of the submaps is carried
out by associating stored and observed feature descriptors
using approximate nearest neighbour (ANN) search with each
correspondence voting for those submaps they were observed
[7]. The submaps having the highest numbers of votes are
selected and checked for geometric consistency based on
projection histograms and ICP.

Granström et al. concatenate a set of various features
such as curvature and average range serving as input for an
Adaboost based classifier that detects corresponding scans
[8]. As shown in [2] this approach is computationally very
expensive compared to the state-of-the-art.

Either of the mentioned approaches [7], [2], [8] extract fea-
tures from raw data serving as keypoints. Different from that,
authors utilized occupancy grid maps allowing to incorporate
submaps built incrementally and potentially using multiple
sensors. In our recent work we investigated non-negative ma-
trix factorization (NMF) to automatically determine relevant
feature types of a given dataset in terms of basis primitives
constructed from adjacent grid cells [9]. By representing local
grid maps as a distribution of basis primitives, the presented
method also allows to reduce the storage sizes of the prior
occupancy maps which scale quadratically with increasing
environment sizes.

C. Geometrical FLIRT Phrases

The most related work to our approach is given by [2],
[10] and hence specifically outlined here. Tipaldi and Ar-
ras presented FLIRT, a multi-scale feature detector for 2D
range scans [10]. This work was accompanied by a shape
context and a beta grid desciptor. The latter comprises raw

distance measurements around local interest points into polar
tesselations which were shown to be superior to the well-
known shape context descriptors. Tipaldi et al. extended their
approach by encoding the local descriptors as words which
are assigned according to an a-priori learnt vocabulary [2].
While pure appearance based place signatures based on bag-
of-words (BOW) achieve rather poor results, particularly for
outdoor datasets, the authors introduced Geometrical FLIRT
phrases (GFP). Inspired by the visual recognition system of
Zhang et al. [3], GFPs enable to match sets of features in
the cyclic order of observation ensuring the preservation of
geometric constraints. GFP performs better than BOW but
still requires a large number of full geometric consistency
checks for potential matches in order to achieve competitive
recognition results.

D. Summary

None of the mentioned laser based approaches makes ex-
plicit use of relative orientations and distances of co-occuring
landmarks which can substantially contribute towards distin-
guishing places. Except for [11], [7] all methods require a
prior vocabulary or training stage for feature association.

III. GEOMETRICAL LANDMARK RELATIONS

This section introduces Geometrical Landmark Relations
(GLARE). At first it is explained how GLAREs are generated
from the input 2D range scans. Subsequently it is shown
how these signatures can be integrated into efficient retrieval
algorithms.

A. Feature detection

At first, a 2D range scan is searched for local features
serving as landmarks. Similiarly to Tipaldi et al. we extract
points of high curvature which were shown to be superior
in the domain of 2D range data [10]. The range data of a
laser is considered as a one dimensional curve mapped into
a multi-scale representation. For each scale the input curve
is smoothed by varying Gaussian kernels. The smoothing
kernels are normalized in order to be invariant to the sampling
density. The features are local extrema exceeding a certain
threshold in a difference signal constructed from the input
curve and the smoothed curves. The mathematical derivation
of the feature detection is given by [10]. As a result we obtain
a set of landmarks for each range scan.

B. Encoding spatial relations of landmarks

For a set of N landmarks l1, ... , lN detected in the k-th
range scan we estimate the Euclidean distances ρi,j of each
landmark li = {xi, yi} to all others lj = {xj , yj} of the set
with i 6= j within the coordinate frame of the range scan.
In addition to that the bearings θi,j and θj,i of co-occuring
landmarks are estimated:

θi,j = atan2(yi − yj , xi − xj) (1)

Only the bearings θ+i,j = max (θi,j , θj,i) are considered for
further processing. The reduction to one bearing θ+i,j for
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Figure 2. Generation of GLARE: Each landmark relation, given by its orientation θi,j and distance ρi,j , is incorporated as a multivariate Gaussian. The
scan signature S (k) is obtained by estimating the normalized sum over all histograms Hi,j .

each relation avoids storing redundant information. Having
estimated ρi,j and θ+i,j , the distribution of spatial relations is
captured. For this purpose the bearings θ+ and distances ρi,j
are quantized and assigned to uniformly sized bins:(

θ+i,j , ρi,j
)
∈ bin (nθ, nρ) (2)

The 2D histogram Hi,j is constructed by a discrete mul-
tivariate Gaussian centred on the bin n = (nρ, nθ) given
the covariance matrix ΣH . Centering the Gaussian to the
discretized bin n instead of the exact position

(
θ+i,j , ρi,j

)
allows a precomputation of the contributions to the histogram
bins covered by covariance ΣH . The histogram position
m = (mρ,mθ) is estimated according to:

Hi,j (m) =N (m− n, ΣH) (3)

The signature S (ki) for the landmark li is estimated as
follows:

S (ki) =
∑
j

Hi,j (4)

Finally, we obtain the scan signature S (k) for the range
scan k by estimating a normalized sum over all landmark
signatures:

S (k) = η
∑
i

S (ki) (5)

The factor η is for the normalization of the signature. Figure 2
exemplarily illustrates the generation of GLARE signatures.

Our technique differs from a multitude of other place
recognition approaches since the latter typically quantize the
local neighbourhood of landmarks to descriptors which are
quantized to words of a prior vocabulary [10], [5]. Each
descriptor hence votes for exactly one word which is also
referred to as hard-voting. In contrast, we use a soft-voting
scheme enabling to evaluate adjacent cells depending on ΣH .
The covariance matrix ΣH allows to incorporate uncertainties
in relative depth and orientation estimates. These are mainly
driven by the sensor accuracy but can also be biased by the
localization quality of the extracted features. We observed
that this scheme results in smoother results which is partic-
ularly well suited for noisy range data.

C. Efficient scan retrieval

Having generated the scan signatures, the goal is to collect
those in a global repository S while simultaneously managing
an index structure allowing fast scan retrieval. Since S
consists of high-dimensional vectors, Approximate Nearest
Neigbor Search (ANN) becomes indispensable in order to
enable efficient retrieval [12]. Conventional kd-trees always
pick that dimension of the input data having the largest
variance to bisect the data at each level of the tree. This
structure has shown to be less suitable in the presence of



high-dimensional data [13]. Thus it is recommended to make
use of multiple randomized kd-trees whose splitting bounds
are randomly drawn from the top variant dimensions resulting
in better representations for higher dimensions. The key
difference of ANN compared to the exact nearest neighbour
search is that the number of points to evaluate is bound to τ .
This method achieves a sufficient approximation providing
the bound is set appropriately. Setting this bound is critical
as it poses a trade-off of accuarcy and time complexity. In
addition to that, it is affected by the balance quality of the kd
tree. When using GLARE for recognizing places with respect
to a prior map (global localization) we can assume to have
a well-balanced tree. For loop closure detection in SLAM,
the global repository S is constantly updated while traversing
the environment which requires the underlying kd-trees to be
rebalanced after a certain amount of change. We found that
incorporating the ratio of the kd-tree leafs and the number
of recently appended elements (before rebalancing) indicate
a promising choice of τ .

Given the scan signature S (k), the global repository S
is searched for potential candidate matches using the L1-
norm. For performance reasons we limit the search to the
K approximate nearest neighbours. Similiarly to τ , K needs
to be set appropriately in order to obtain optimal results in
terms of precision and recall. Setting K to a lower value
might result in missing place correspondences, whereas large
values of K require a potentially large number of geometric
consistency checks which are computationally expensive due
to the trigonometric operations involved.

We observed that the recognition of GLARE based signa-
tures using ANN achieves optimal results in terms of time
complexity and accuracy. The inverted file techniques that
are commonly used for vision-based place recognition [5],
[1] and also in GFP [2] are not suited for GLARE due to
their dense histogram representations. The distributions of
visual words for a single location are typically rather sparse
representing only a small subset of the prior vocabulary.
Combined with a hard-voting scheme this allows to invert
the recognition by having visual words pointing towards
their corresponding images or scans. Only those places
being drawn are considered for further matching. Applied
to GLARE, this procedure does not contribute to a faster
retrieval since on the one hand the number of votes in the
histogram is significantly larger (N vs. N2/2). Second, our
soft-voting mechanism does not solely consider the closest
bin but also adjacent ones.

D. Geometric verification

Even though two places might be close to each other in
the signature space, they do not necessarily describe the same
place. That is why the set of K putative matches for the place
S (k), provided by the retrieval system, is checked for geo-
metrical consistency. For this purpose, we again make use of
the geometric relations of co-occurring landmarks. For each
landmark li in the k-th scan, the landmark signature S (ki) is
estimated according to Eq. 4. The landmark correspondences

of place S (k) to the K putative matches are obtained by
estimating the pair-wise distances of the landmark signatures
S (ki). Those being above a fixed threshold are considered
for a RANSAC based scan-matching which estimates a rigid
transformation of the two scans. The residual error as well
as the number of inlier correspondences indicate whether the
two given scans satisfy our geometric consistency check and
hence are considered as matching places.

IV. EXPERIMENTS

In order to evaluate the presented approach, a number of
experiments were carried out. Specifically, we selected differ-
ent publicly available datasets, one of an indoor environment
and three captured outdoors (see Table I).

Table I
DATASETS FOR EXPERIMENTS

Name Type # Scans # Landmarks Path length [m]
Intel-lab indoor 2672 39392 360.7

FR-Clinic outdoor 6917 190760 1437.6
Victoria Park outdoor 5751 81795 4206.14

Kenmore outdoor 13063 499237 6588.34

A. Setup

For our experiments, we compared two different variants of
GLARE to the state-of-the-art approach GFP [2]. GLARE-1
only uses relative distances of landmarks omitting the relative
orientations. GLARE-2 incorporates distances as well as ori-
entations. For GLARE-1 and GLARE-2 we used 100 linearly
sized bins with a size of 0.5 m for the outdoor datasets and 50
bins with a size of 0.2 m for the indoor datasets. GLARE-
2 additionally utilizes 8 angular bins. GFPs are used with
the optimal settings, as shown in [2]. We tested GLARE-
1, GLARE-2 and GFP on all datasets with three different
nearest neighbour numbers, more precisely with K = 50,
K = 100 and K = 500. The geometric verification rejects
putative matches of places by thresholding based on the
residual error (linear: 0.5m, angular: 0.2rad). The thresholds
for estimating the precision/recall curves are obtained by
using a different numbers of inlier correspondences c (here:
a = 1, 2, ..., 32).

B. Run time

The run times for GLARE-1, GLARE-2 and GFP are
shown in Table II. GFP only gets close to GLARE’s recall
rates for a large number of nearest neigbors which is why
K = 500 is used for this experiment (see Figure 3).
Actually GFP requires even more putative neighbours to be
considered, however, the run time for this becomes highly
impracticable.

The run times for feature detection are very similar since
all approaches share the same algorithms (see Section III-A).
The descriptor construction (signatures) of GLARE-2 takes
slightly longer than GLARE-1 but all approaches are very
close to each other. It is apparent that the geometric ver-
ification for GLARE is significantly faster than GFP. This



is probably due to the fact that the relative distances of
landmarks allow to reject more false-positive feature corre-
spondences than the appearance based descriptors of GFP. We
observed that the majority of features on the Kenmore dataset
refer to point-like features resulting in very similar GFP
descriptors. Thus the number of putative correspondences
passed to RANSAC is smaller for GLARE compared to GFP.
Note that GLARE already achieved very accurate results for
K = 50 (see Figure 3), which would substantially reduce the
run time needed for geometric verification.

Table II
RUN TIME ON KENMORE FOR K = 500

GLARE-1 [ms] GLARE-2 [ms] GFP [ms]
feature detection 7.5402 7.298 7.276

feature description 0.768 1.291 1.797
scan retrieval 18.578 25.312 81.462

geometric verification 89.596 88.928 330.586
total 116.482 122.829 421.121

C. Results

The results for our experiments are shown in Figure 3.
It is obvious that both GLARE-1 and GLARE-2 outperform
GFP on all outdoor datasets. GFP gets closer to GLARE
with a high number of K nearest neighbours taken into
consideration. The differences in precision/recall for GLARE
are rather small for increasing number of K. The number K
essentially determines the run time of the place recognition
since the geometric verfications that need to be carried out
for K scans are computationally highly expensive. Exactly
due to that fact GLARE is much more efficient than GFP
that requires an order of magnitude more verification steps.

Figure 3 also shows that GLARE is slightly worse than
GFP on the indoor dataset (intel-lab). We observed that
this is due to lower variance in relative distances of co-
occuring landmarks and the high self-similarity in man-made
environments in terms of spatial relations. In contrast to
GFP, GLARE does not require prior training stages to learn
landmark signatures from at least very similar environments.

GLARE-1 outperforms GLARE-2 in terms of run-time
since the signatures of GLARE-2 are eight times as large
as those of GLARE-1 which becomes apparant in the pair-
wise landmark association in the geometric verification. Note
that it is possible to use GLARE-2 for the scan signature
generation and use GLARE-1 for the geometric verification.

V. CONCLUSIONS

This paper introduced Geometrical Landmark Relations
(GLARE) designed for place recognition in 2D range data.
GLAREs encode relative landmark relations captured from
single range scans into scan signatures. The latter reduces
the scan retrieval to a very efficient approximate nearest
neighbour search avoiding to evaluate each single signature
of the repository for finding correspondences. It was shown
that GLARE significantly outperforms the state-of-the-art
approach GFP in outdoor environments, while achieving

similar results indoors. In contrast to GFP, GLARE does not
require any prior training stage emphasising its strengths for
the application in a-priori unknown environments. Our exper-
iments demonstrated that GLARE requires fewer candidate
matches compared to GFP which substantially reduces the
run time since the RANSAC based geometric verification
is computationally expensive. Similarly to the state-of-the-
art GLARE not only allows to recognize places but also
to estimate a relative transformation and alignment error
of the underlying range scans. This enables precise global
localization and a convenient integration into existing graph
based SLAM frameworks. In addition to the application of
place recognition, GLAREs can be utilized for further tasks
in the context of mobile robot navigation. For instance,
GLARE signatures provide information about the spatial
settings of co-occuring landmarks which is beneficial for
semantic labelling of places, i.e. distinguishing narrow cor-
ridors from wide entrance halls. The contextual information
about the local surroundings can be used, for example, to
perform motion planning on a mobile robot.
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Figure 3. Experimental results obtained using GLARE-1 (red), GLARE-2 (blue) and GFP (black) are shown for different number of nearest neighbours
K taken into consideration. The results for GLARE-1/2 on the Kenmore dataset (K = 500) are so close that only one is visible in the plot.
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