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Abstract—Place recognition is a fundamental requirement
for mobile robots. It is particularly needed for detecting loop
closures in SLAM and to enable self-localization for mobile
robots given a prior map. The multitude of existing approaches
rely on appearance based methods, e.g. the extraction of interest
points in terms of local extrema. It can be observed that the
availability of these features is highly environment specific and
the limited descriptiveness causes a large number of false-
positive matches. This paper utilizes a generic environment
description based on normal surface primitives. The association
of different places is done using Geometrical Surface Relations
(GSR) of co-occurring primitives. Experimental results obtained
from publicly available datasets demonstrate that GSR outper-
forms state-of-the-art approaches in place recognition for large
scale outdoor as well as indoor environments.

I. INTRODUCTION

Place recognition is an essential capability of a mobile
robot in order to fulfill high-level tasks. In particular, it is
necessary for detecting loop closures in SLAM as well as the
global localization with respect to a prior map. In addition
to these common applications, place recognition contributes
to a number of further tasks, as for instance the merging
of datasets collected during several surveys. Places are as-
sociated either in a pure topological or metric manner. The
latter estimates a relative transformation of the query scan
with respect to the matching one, whereas appearance based
approaches solely match nodes of topological graphs [1].
While vision-based solutions to place recognition have been
quite exhaustively investigated, only little attention has been
paid to the capabilities of 2D range data. This is obviously
due to the fact that, in contrast to images, 2D range scans only
describe a relatively small subspace of the surrounding en-
vironment and hence provide less information to distinguish
different places. Exhaustive matching of invidual laser scans
is impractical in terms of time complexity when looking at
large scale environments making descriptive place signatures
and efficient retrieval algorithms indispensable. Similarly to
vision-based methods, the extraction of local interest points
serving as landmarks is beneficial. In existing approaches
these landmarks are assigned descriptors capturing their local
surroundings. As usual in bag-of-words (BOW) techniques
these descriptors can be quantized to words enabling laser
scans to be represented by histograms of word occurrences.
While achieving promising results in visual applications [1],
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BOW performs rather poor in conjunction with 2D range data
[2], particulary when looking at outdoor environments. In-
spired by the vision community [3], Tipaldi et al. introduced
Geometrical FLIRT phrases (GFP) allowing approximate
geometric verification by preserving the clock-wise order
of observed words [2]. Although GFP reduces the number
of potential place correspondences, the number of required
full geometric verifications on outdoor sequences increases
with the size of the environment. This paper introduces
Geometrical Surface Relations (GSR) explicitly taking into
account relative metric displacements of landmarks observed
in individual range scans.

II. RELATED WORK

This section presents an overview of existing work dealing
with place recognition. First, it is shown how GSR is related
to vision-based approaches utilizing geometric constraints.
Subsequently our approach is justified against prior work in
range based place recognition. Two approaches being mostly
related to our work are outlined in detail.

A. Spatial relations in vision-based place recognition

There exists a large amount of work dedicated to place
recognition in the computer vision literature. A survey of
place recognition in visual SLAM, i.e. loop closure detection,
is given by [4]. Matching of geometric constraints within
visual recognition tasks has recently drawn potential interest
again. In [5] Johns and Yang propose to quantize the relative
orientations and distances of co-occurring features in the
image coordinate frame. Also Cho et al. incorporate spatial
relationships between keypoints in a graph-based object
recognition system. Paul and Newman extended FABMAP,
an apperance based place recognition system, by modelling
spatial relations of observed keypoints in random graph
models [6]. In contrast to [5], FABMAP-3D does not work
in the image coordinate frame.

Clemente et al. propose to use relative distances of ob-
served features as an evaluation step when matching submaps
[7]. However, the complexity of the matching procedure
limits its use for rather small numbers of submaps. Finman
et al. proposed physical words to encode spatial relations of
objects segmented from RGB-D images, captured solely in
indoor environments [8].

B. Place recognition based on range scans

The related work on place recognition utilizing 2D lidar
scans is rather small compared to those using camera images.



Bosse and Zlot analyse several detectors and descriptors for
local keypoints aggregated from sequential 2D range scans
into submaps. The recognition of the submaps is carried
out by associating stored and observed feature descriptors
using approximate nearest neighbour (ANN) search with each
correspondence voting for the associated submap [9]. The
submaps having the highest numbers of votes are selected
and checked for geometric consistency based on projection
histograms and ICP.

Granström et al. concatenate a set of various features
such as curvature and average range serving as input for an
Adaboost based classifier that detects corresponding scans
[10]. As shown in [2] this approach is computationally very
expensive compared to the state-of-the-art.

All of the mentioned approaches [9], [2], [10] extract fea-
tures from raw data serving as keypoints. Different from that,
authors utilized occupancy grid maps allowing to incorporate
submaps built incrementally and potentially using multiple
sensors. In our recent work we investigated non-negative ma-
trix factorization (NMF) to automatically determine relevant
feature types of a given dataset in terms of basis primitives
constructed from adjacent grid cells [11]. By representing
local grid maps as a distribution of basis primitives, the
presented method also allows to reduce the storage sizes of
the prior occupancy grid maps which scale quadratically with
increasing environment sizes.

In addition to presented work there is also a number of
approaches to place recognition working on 3D range data.
Steder et al. introduced a recognition system which extracts
points of local extrema and uses small patches of the range
image around the latter [12]. Similarly to [2] the features are
quantized and matched using a BOW model. Magnusson uses
normal surface primitives whose appearances (e.g. shape)
are classified. Feature vectors encoding the frequencies of
present surface primitives are used to identify places [13].
Our approach shares the idea of using surface primitives, but
passes on modelling the appearances.

C. Geometrical FLIRT Phrases

The most related work to our approach is given by [2],
[14] and hence specifically outlined here. Tipaldi and Ar-
ras presented FLIRT, a multi-scale feature detector for 2D
range scans [14]. This work was accompanied by a shape
context and a beta grid desciptor. The latter comprises raw
distance measurements around local interest points into polar
tesselations which were shown to be superior to the well-
known shape context descriptors. Tipaldi et al. extended their
approach by encoding the local descriptors as words which
are assigned according to an a-priori learnt vocabulary [2].
While pure appearance based place signatures based on bag-
of-words (BOW) achieve rather poor results, particularly for
outdoor datasets, the authors introduced Geometrical FLIRT
phrases (GFP). Inspired by the visual recognition system of
Zhang et al. [3], GFPs enable to match sets of features in
the cyclic order of observation ensuring the preservation of
geometric constraints. GFP performs better than BOW but

still requires a large number of full geometric consistency
checks for potential matches in order to achieve competitive
recognition results.

D. Geometrical Landmark Relations

We recently presented Geometrical Landmark Relations
(GLARE) [15] which similarly to FLIRT extracts local fea-
tures of high curvature from range scans. However, it does not
generate local descriptors to identify the features but instead
makes use of geometrical relations of co-occurring features
in a range scan. We demonstrated that aggregating relative
distances and orientations of co-occurring landmarks to scan
signatures enables us to match place correspondences among
very large datasets with significantly less geometrical consis-
tency checks. GLARE was shown to outperform GFP in run
time and recognition performance for outdoor environments.
GFP however achieved slightly better recognition rates in
indoor environments.

E. Summary

The majority of the presented work uses local interest
points with quantized descriptors and requires vocabularies
or prior training stages. Except for GLARE [15], none of the
presented approaches working on range scans makes explicit
use of relative orientations and distances of co-occurring
landmarks which can substantially contribute towards distin-
guishing places.

III. GEOMETRICAL SURFACE RELATIONS

This section introduces Geometrical Surface Relations
(GSR). At first it is explained how GSRs are generated from
the input 2D range scans. Subsequently it is shown how these
signatures can be integrated into efficient retrieval algorithms.

A. Extraction of surface primitives

At first, all measurements of a 2D range scan are projected
onto a regular grid. Similar to Magnusson et al. [13] we
estimate a normal distribution with mean µi and a covariance
matrix Σi for the measurements of each non-empty cell i.
The surface orientations θi of each primitive is required in
order to model the spatial relations. For this purpose we
utilize an eigenvalue decomposition of the surface primitive’s
covariance matrix. The eigenvector emin with the smallest
eigenvalue is selected for estimating the orientation θ̂i:

θ̂i = atan2(e
{y}
min, e

{x}
min) (1)

Since the eigenvector emin is not necessarily pointing to-
wards the sensor’s origin, we explicitely account for this
by estimating the primitives’ orientation ψorig towards the
sensor’s origin:

ψorig = atan2(µ
{y}
i , µ

{x}
i ) + π (2)

If the displacement of ψorig and θ̂i exceeds a threshold
τmax, we map the surface primitive’s orientation as follows:



θi =

{
θ̂i if (ψorig − θ̂i) < τmax

θ̂i + π otherwise
(3)

In this way it is ensured that θi is assigned the expected
direction. We empirically set τmax = π/3, which however
is not too crucial. The size and resolution of the grid have
to be justified according to the type of environment and the
sensor used. As a result of this step we obtain a set of surface
primitives li = {µ,Σ, θ}i for each range scan.

B. Encoding spatial relations

For a set of N surface primitives l1, ... , lN detected in the
k-th range scan we estimate the Euclidean distances ρi,j of
each primitive li = {µ,Σ, θ}i to all others lj = {µ,Σ, θ}j
of the set with i 6= j within the local coordinate frame of the
range scan. In addition to that the bearings ∆θi,j and ∆θj,i
of co-occurring primitives are estimated:

∆θi,j = θi − θj (4)

Having estimated ρi,j and ∆θi,j , the distribution of spatial
relations is captured. For this purpose the bearings ∆θi,j and
distances ρi,j are quantized and assigned to uniformly sized
bins:

(∆θi,j , ρi,j) ∈ bin (nθ, nρ) (5)

The 2D histogram Hi,j is constructed by a discrete mul-
tivariate Gaussian centred on the bin n = (nρ, nθ) given
the covariance matrix ΣH . Centering the Gaussian to the
discretized bin n instead of the exact position (∆θi,j , ρi,j)
allows a precomputation of the contributions to the histogram
bins covered by the covariance ΣH . The histogram position
m = (mρ,mθ) is estimated according to:

Hi,j (m) =N (m− n, ΣH) (6)

The signature S (ki) for the primitive li is estimated as
follows:

S (ki) =
∑
j

Hi,j (7)

Finally, we obtain the scan signature S (k) for the range
scan k by estimating a normalized sum over all signatures:

S (k) = η
∑
i

S (ki) (8)

The factor η ensures the normalization of the signature.
Figure 1 exemplarily illustrates a GSR signature.

Our technique differs from a multitude of other place
recognition approaches since the latter typically quantize the
local neighbourhood of features to descriptors which are
quantized to words of a prior vocabulary [14], [5]. Each
descriptor hence votes for exactly one word which is also
referred to as hard-voting. In contrast, we use a soft-voting
scheme enabling to evaluate adjacent cells depending on ΣH .
The covariance matrix ΣH allows to incorporate uncertainties
in relative depth and orientation estimates. These are mainly

Figure 1. Example of a scan signature generated using Geometrical Surface
Relations.

driven by the sensor accuracy but can also be biased by the
localization quality of the extracted features. We observed
that this scheme results in smoother results which is partic-
ularly well-suited for noisy range data.

C. Efficient scan retrieval

Having generated the scan signatures, the goal is to collect
those in a global repository S while simultaneously managing
an index structure allowing fast scan retrieval. Since S
consists of high-dimensional vectors, Approximate Nearest
Neigbor Search (ANN) becomes indispensable in order to
enable efficient retrieval [16]. Conventional kd-trees always
pick that dimension of the input data having the largest
variance to bisect the data at each level of the tree. This
structure has shown to be less suitable in the presence of
high-dimensional data [17]. Thus it is recommended to make
use of multiple randomized kd-trees whose splitting bounds
are randomly drawn from the top variant dimensions resulting
in better representations for higher dimensions. The key
difference of ANN compared to the exact nearest neighbour
search is that the number of points to evaluate is bound to τ .
This method achieves a sufficient approximation providing
the bound is set appropriately. Setting this bound is critical
as it poses a trade-off of accuracy and time complexity. In
addition to that, it is affected by the balance quality of the
kd-tree. When using GSR for recognizing places with respect
to a prior map (global localization) we can assume to have
a well-balanced tree. For loop closure detection in SLAM,
the global repository S is constantly updated while traversing
the environment which requires the underlying kd-trees to be
rebalanced after a certain amount of change. We found that
incorporating the ratio of the kd-tree leafs and the number
of recently appended elements (before rebalancing) indicate
a promising choice of τ .

Given the scan signature S (k), the global repository S
is searched for potential candidate matches using a cosine
distance function. For performance reasons we limit the
search to the K approximate nearest neighbours. Similiarly
to τ , K needs to be set appropriately in order to obtain
optimal results in terms of precision and recall. Setting K to
a lower value might result in missing place correspondences,
whereas large values of K require a potentially large number
of geometric consistency checks which are computationally
expensive due to the trigonometric operations involved.



We observed that the recognition of GSR based signa-
tures using ANN achieves optimal results in terms of time
complexity and accuracy. The inverted file techniques that
are commonly used for vision-based place recognition [5],
[1] and also in GFP [2] are not suited for GSR due to
their dense histogram representations. The distributions of
visual words for a single location are typically rather sparse
representing only a small subset of the prior vocabulary.
Combined with a hard-voting scheme this allows to invert
the recognition by having visual words pointing towards
their corresponding images or scans. Only those places being
drawn are considered for further matching. Applied to GSR,
this procedure does not contribute to a faster retrieval since
on the one hand the number of votes in the histogram is
significantly larger (N vs. N2/2). Second, our soft-voting
mechanism does not solely consider the closest bin but also
adjacent ones.

D. Geometric verification

Due to perceptual aliasing it is inevitable that two different
places might be close in the signature space. This particularly
occurs in environments with a higher number of repetitive
structures such as long corridors in indoor environments. That
is why the set of K putative matches for the place S (k),
provided by the retrieval system, is checked for geometrical
consistency. For this purpose, we again make use of the geo-
metric relations of co-occurring landmarks. For each surface
primitive li in the k-th scan, the landmark signature S (ki) is
estimated according to Eq. 7. The landmark correspondences
of place S (k) to the K putative matches are obtained by
estimating the pair-wise distances of the landmark signatures
S (ki). Those being above a fixed threshold are considered
for a RANSAC based scan-matching which estimates a rigid
transformation of the two scans. The residual error as well
as the number of inlier correspondences indicate whether the
two given scans satisfy our geometric consistency check and
hence are considered as matching places.

IV. EXPERIMENTS

In order to evaluate the presented approach, a number of
experiments were carried out. The first experiment shows the
recognition performance on four publicly available datasets.
Here the goal is to compare the results of Geometrical
Surface Relations (GSR) to the state-of-the-art approaches
GLARE [15] and GFP [2]. The second experiment analyzes
the recognition performance of GSR over longer periods of
time. While the first experiment is rather focussing on place
recognition for detecting loop closures in SLAM (whole
trajectory considered), the second rather demonstrates the
GSRs performance for global localization and relocalization
respectively.

A. GSR vs. State-of-the-art

For this experiment we selected four different publicly
available datasets of indoor and outdoor environments which

Table I
DATASETS FOR EXPERIMENTS

Name Type # Scans # Features Path length [m]
Intel-lab indoor 2672 39392 360.7

FR-Clinic outdoor 6917 190760 1437.6
Victoria Park outdoor 5751 81795 4206.14

Kenmore outdoor 13063 499237 6588.34

were also used in [15] and [2] to evaluate GLARE and GFP
respectively (see Table I).

GFP are generated using the optimal settings, as shown in
[2]. For GLARE and GSR we use 8 angular bins, 100 linearly
sized bins with a size of 0.5 m for the outdoor datasets and
50 bins with a size of 0.2 m for the indoor datasets (see [15]).
GSR is initialized with grid cell sizes of 0.25 m for indoor
and 1.0 m for outdoor datasets. We tested GSR, GLARE
and GFP on all datasets with a number of K = 50 near-
est neighbours. The geometric verification rejects putative
matches of places by thresholding based on the residual error
(linear: 0.5m, angular: 0.2rad). The thresholds for estimating
the precision/recall curves are obtained by using a different
numbers of inlier correspondences c (here: a = 1, 2, ..., 32).
The datasets are matched one-by-one, but ignoring the trivial
self-match. This procedure is similar to the procedures in [2]
and [15]. The results are shown in Figure 2.

B. Long-term Recognition using GSR

This experiment evaluates the recognition of GSR over
longer periods of time. For this purpose we make use of a
subset of five datasets of the MIT Stata Center collection [18]
covering a total period of time of more than 2 months (see
Table II). The ground truth supplemented with these datasets
provides an accuracy of about 2cm. The GSRs generated
for the first dataset (2012-01-18) serve as prior map for
the subsequent datasets. This demonstrates the recognition
performance of GSR in terms of global localization. The
results are shown in Figure 3. Only the results of the
first dataset (2012-01-18) are obtained similar to the first
experiment by matching the dataset to itself. The ground truth
poses of datasets 2-5 are used to find overlapping areas of
the environment traversed. Hence we exclude those scans of
the datasets 2-5 that are mapped outside the area of dataset
1. The settings for GSR are similar to the ones for the indoor
environments of experiment 1.

Table II
STATA CENTER DATASETS FOR LONG-TERM EXPERIMENT.

# Date # Scans # Primitives Path length [m]
1 2012-01-18 2562 237559 683.0
2 2012-01-25 1355 135246 348.0
3 2012-01-28 2279 212455 635.0
4 2012-02-02 2806 275128 1003.0
5 2012-04-02 1726 154336 606.0
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Figure 2. Experimental results obtained using GSR (red), GLARE (blue) and GFP (black) are shown for K = 50 nearest neighbours taken into
consideration.
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Figure 3. Place recognition results using GSR based on a subset of Stata
Center dataset collection.

C. Run time

The run times for GSR, GLARE and GFP are shown in
Table III. GFP only gets close to GLARE’s and GSR’s recall

rates for a large number of nearest neigbors which is why
K = 500 is used for this experiment. Actually GFP requires
even more putative neighbours to be considered, however, the
run time for this becomes highly impracticable.

The run times for feature detection for GLARE/GFP are
very similar since they share the same algorithms (see Section
III-A). The feature detection and description phase of GSR
takes slightly longer than GLARE/GFP since generating the
local normal surface primitive map is more time consuming.
It is apparent that the geometric verification for GSR/GLARE
is significantly faster than GFP. This is due to the fact that
the relative distances of landmarks allow to reject more
false-positive feature correspondences than the appearance
based descriptors of GFP. We observed that the majority of
features on the Kenmore dataset refer to point-like features
resulting in very similar GFP descriptors. Thus the number
of putative correspondences passed to RANSAC is smaller
for GSR/GLARE compared to GFP. Note that GSR already
achieved very accurate results for K = 50 (see Figure 2),
which would substantially reduce the run time needed for
geometric verification.



Table III
RUN TIME ON KENMORE FOR K = 500

GSR [ms] GLARE [ms] GFP [ms]
feature detection 11.121 7.298 7.276

feature description 6.322 1.291 1.797
scan retrieval 26.198 25.312 81.462

geometric verification 102.596 88.928 330.586
total 146.237 122.829 421.121

D. Discussion

It is obvious that GSR outperforms both GFP and GLARE
on all datasets in the first experiment. We observed that GFP
gets closer to GLARE and GSR with a high number of
K nearest neighbours taken into consideration which again
confirms the results we achieved in prior experiments in
[15]. The differences in precision/recall for GSR are rather
small for increasing number of K. The number K essentially
determines the run time of the place recognition since the
geometric verfications that need to be carried out for K scans
are computationally highly expensive. Even though GLARE
already achieves promising results, the surface primitives of
GSR further help distinguishing similar places, particularly
in structureless environments.

The second experiment quantitatively shows GSRs perfor-
mance for long-term place recognition. The recognition is
worse than for the first experiment which is mainly due to
the fact that the robot is likely to move further from the
reference paths given by the first dataset. Secondly, it is
obvious that recognition performance drops with increasing
time difference to the reference dataset which is probably due
to structural changes in the environment. This problem has to
be tackled differently by taking changes into consideration.
This problem, however, is not in the scope of this paper as
we are rather interested in demonstrating the repeatability of
our presented approach to place recognition.

V. CONCLUSIONS

This paper introduced Geometrical Surface Relations
(GSR) designed for place recognition in 2D range data. GSRs
encode relative landmark relations captured from single
range scans into scan signatures. The latter reduces the scan
retrieval to a very efficient approximate nearest neighbour
search avoiding to evaluate each single signature of the
repository for finding correspondences. It was shown that
GSR outperforms the state-of-the-art approaches GLARE and
GFP in outdoor as well as indoor environments. In contrast to
GFP, GSR does not require any prior training stage empha-
sising its strengths for the application in a-priori unknown
environments. Our experiments further demonstrated that
GSR is very well suited for the global localization of a mobile
robot. Similarly to the state-of-the-art GSR not only allows to
recognize places but also to estimate a relative transformation
and alignment error of the underlying range scans. This
enables precise global localization and a convenient integra-
tion into existing graph based SLAM frameworks. Thanks
to the more generic descriptive power of surface primitives,

GSR provides an outstanding recognition performance for a
multitude of environment types ranging from suburbs, parks,
hallways, offices which was demonstrated on the datasets
kenmore, victoria park, stata center and intel respectively.
Thanks to the elliptic shapes of the surface primitives, GSR
is able to automatically adapt to dominant features in these
environments, as for instance trees, walls or doors.
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