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Abstract

This paper focuses on the classification of obstacles that are widely present in warehouse environments using an RGBD
camera. Our approach applies depth segmentation to detect obstacles which are classified using a Convolutional Neural
Network and a Support Vector Machine. Our system is evaluated on real-world data captured from an automated reach

truck in a warehouse environment.

1 Introduction

The detection of obstacles is a fundamental prerequisite
for a mobile robot in order to safely navigate in its envi-
ronment. Static obstacles are incorporated when planning
a path from the current position to a given goal. Dynamic
obstacles are taken into account by the local motion plan-
ning system in order to avoid collisions. While avoid-
ing static obstacles such as walls, trees, racks is quite
straightforward, incorporating dynamic obstacles in mo-
tion planning is more challenging. This is particularly the
case if prior knowledge about an obstacle is not available
which poses significant challenges when predicting its
future positions and velocities. Many robotic systems are
able to detect obstacles blocking or crossing a planned
path. Depending on the size and available free space, the
robot is forced to stop and wait or bypass the latter. The
missing context knowledge about the kind of obstacle,
however, limits the potential avoiding maneuvers and
requires the robot to reduce its speed significantly. If,
however, knowledge about the type of obstacle is avail-
able, a robot is able to carry out more intelligent and
specifically tailored navigation. This paper introduces
an obstacle classification system allowing to incorporate
environment-specific knowledge. We therefore analyze
our target environment for those objects being commonly
expected as obstacles. In the case of warehouses we
found the following object classes to be most relevant:
humans, palleted goods and forklifts. The forklift class
covers an extensive number of wheeled warehouse ve-
hicles, ranging from lifting carts to large forklift trucks.
The class palleted goods describes the majority of goods
being stored and moved on pallets in warehouses (e.g.
pallet cartons, stillages). We observed that these are the
main classes of objects occurring as obstacles on driv-
ing paths in the target environment and being worth to
be threatened individually. Of course the number of ob-
ject classes that might appear in warehouses is likely
larger than three. However, these are still detected as
obstacles but not necessarily classified. Reducing the
number of object classes helps minimizing confusions
and usually increases the classification certainty par-

ticularly in the presence of visually similar objects.

Figure 1: An automated reach truck in a warehouse serv-
ing as test environment.

Even though we emphasize the application of our system
for robot motion planning, the particular implementation
and evaluation of the latter is not in the scope of this pa-
per. The goal is to present and evaluate our approach for
detecting and classifying obstacles in one specific type of
environment while motivating its application for robotic
navigation tasks. Given RGB images of captured obsta-
cles, the goal is to extract features from the image serving
as input for a multi-class classifier. A pretrained convo-
lutional neural network (convnet) is used for feature ex-
traction. The output of a higher layer of the convnet is
used to obtain finegrained representations of individual
objects. The high-dimensional feature vectors being gen-
erated for detected obstacles are passed to a multi-class
support vector machine (SVM). The idea of combining
convnet features and SVMs for object recognition is in-
spired by the work of Yosinski et al. [8] reporting sur-
prising classification results. Razavian et al. investigate
an extensive study about the portability of pre-learned
convnet features for setting up visual recognition systems
[6]. The convnet features have also drawn particular in-
terest by the robotics community. Suenderhauf et al. re-



cently presented a large-scale place recognition system
based on a-priori learned convnet landmarks [7].
Key contributions:

e Segmentation of depth images to detect obstacles
e Use of ConvNets for feature extraction

e Training data obtained solely from public sources
e System evaluation in a warehouse environment

The paper is structured as follows: Our system is de-
scribed in Section 2. We present our experimental results
in Section 3 before concluding the paper.

2 System overview

This section provides an overview of our obstacle classifi-
cation system and revises the methodological background
of our work. The pipeline of our approach is illustrated
by Figure 2 and is divided into the following steps:

1. The input depth image is segmented to detect and
separate objects

2. For each detected object a region of interest in the
RGB image is determined

3. The sub image defined by the region of interest is
passed to a ConvNet and searched for features in
the RGB space

4. ConvNet output is evaluated by N SVMs with N
being the number of expected classes (in our case
three)

The steps mentioned above are described in depth in the
following.

2.1 Obstacle Detection

The input RGBD data of a 3D camera is searched for
obstacles. Thanks to the range data, the detection of oc-
cupied space in close proximity of the vehicle is simpli-
fied. Our goal is to identify objects being close to the
vehicle which might potentially block the path to a goal.
For this purpose a depth segmentation is applied to the
depth image. This enables to separate back- and fore-
ground as well as the ground plane of the captured scene
given a maximum object range of 7,,,. The ground plane
is estimated within the system calibration during a prior
teach-in procedure. We therefore fit planes inside the
point cloud computed based on the depth image and the
calibration parameters. The RANSAC-based implemen-
tation for plane estimation of the C++ library PCL [5] is
used for this step. The ground plane computed within the
teach-in phase is kept fixed. We continuously check the
validity of the ground plane to avoid miscalibrations due
to sensor relocations. The ground plane is further used
to transform the input point cloud relative to the vehi-
cle coordinate system. Having removed the background

and ground plane, the remaining measurements are con-
sidered for further object detection. First, the remaining
point cloud is sub-sampled for performance reasons and
subsequently used to build a voxel grid map. A kd-tree
based on 2D voxel data in the xy-coordinate system (pla-
nar parallel to the ground) is built and serves as input for
further processing. We apply an agglomerative cluster-
ing approach based on a L? norm to identify groups of
points referring to an object. From each data point we
search within a surrounding radius of r. = 0.5m for
neighboring points. Once all data points are visited at
least once, we stop clustering. Note that this approach
also bases on existing implementations of PCL [5]. For
each cluster we estimate the boundaries (min,, max),
(miny, maz,), (min,, maz,). These points are used to
estimate 3D bounding boxes around objects and provide
a prior for the classification since object dimensions are
expected to be known a-priori. At this step we make all
detected objects available for other modules on the robot
irrespective of whether they can be classified at a later
stage.

2.2 Regions of interest

In order to estimate the class of an object, we need to
bridge from the depth data to the RGB image. From the
preceding step we acquire a number of object priors with
associated 3D bounding boxes. Given the camera cali-
bration parameters we project the 3D boundaries of the
object back in the 2D coordinate frame of the RGB im-
age. The estimated 2D vertices of the object are used to
define windows inside the RGB image. Since our system
only classifies a limited number of objects, we filter the
detections based on their physical dimensions. We con-
sider the object’s height (maz, of object) and the length
of the largest object width being visible. Note that de-
pending on the camera’s pose w.r.t. to the object, there
are 1-2 object faces visible. The object dimensions con-
sidered in our system are shown in Table 1.

Class Wmin hmin hmaz
Forklift 1.0 4.0 1.0 3.0
Pallet 0.75 1.25 0.12 0.9

Human 0.2 0.7 1.4 2.1

wmax

Table 1: Allowed dimensions of objects to be consid-
ered. Values are in metres. Dimensions for pallets are
based on euro-pallets. Meaning: e.g. w,;, determines
minimum width, A,,,, the maximum height.

As a result of this step we obtain a set of ROIs whose
boundaries define regions of interests (ROIs). The latter
serve as input for the subsequent layers.
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Figure 2: System overview. The input depth images are segmented. The ground plane itself and objects sticking out
are determined. Regions of interest are generated around detected objects. ConvNet features are extracted from the
RGB images inside the ROIs. The features are passed to a set of linear SVMs for classification.

2.3 Feature Extraction

This layer extracts features from the RGB image data.
This process is restricted to the areas defined by the ROIs
of the prior detection step. For this purpose we use a
Convolutional Neural Network (convnet). The princi-
ple of convnets can be summarized as follows. A set
of convolutional filters are repeatedly applied to the 2D
image data. The filters’ outputs are collected into non-
overlapping grids. The next layer subsamples the in-
put data by applying pooling methods such as taking the
maximum or average of the grid. The combination of
convolving and subsampling the input data is repeatedly
carried out at successive network layers. This method
allows to learn features at different scales and spatial po-
sitions in the image. The complex fully-connected lay-
ers of neural networks are typically found at the end of a
convnet. The outputs of different convnet layers can be
combined for the final output. The convnets differ sig-
nificantly from other feature extraction methods used in
computer vision since they learn features and their dis-
tributions at different levels (e.g. parts, objects, local
characteristics) given the training data. Depending on
the depth, the layers respond to different scales of an ob-
ject. The further a layer is located from the input layer
the more local will be the response and the smaller the
affected area of a firing neuron. As a feature extractor we
make use of the pre-trained convnet CaffeNet [4] which
consists of 7 layers with our system utilizing the fc7-
layer. Since the latter is located at the end of the network

we obtain a 4096-dimensional feature vector capturing
local image characteristics.

2.4 Obstacle Classification

The content of each detected object is classified based
on the convnet features extracted within its ROI and the
object’s dimensions. We train a multi-class Support Vec-
tor Machine (SVM) following a one-versus-one schema,
hence we train one binary SVM for each class ¢:

b; - (Wi -x; +wig) > 1 (D
We use a linear kernel which can be defined as the fol-
lowing cost function:

1
T(w;) = —wiwi
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We observed that using a linear kernel provides promis-
ing classification results while keeping the computational
costs at a minimum. This is necessary since a more com-
plex system has to evaluate a large number of classifiers
for each obstacle being detected at a high frequency.

3 Experiments

In this project we exemplarily trained an SVM using con-
vnet features for the following object classes: forklift
trucks (Forklift), humans (Human), palleted goods (Pal-
let). These classes are expected to be most common in



warehouse environments. In our first experiments we
evaluated the contribution of training an additional class
explicitly accounting for walls, large racks and clutter be-
ing expected in warehouses. However, we observed that
adding this class rather introduced unintended classifi-
cation uncertainty since it covers widely spread clusters
in feature space due to their large variance in visual ap-
pearance. By not explicitly considering the background
we are able to mitigate deteriorations of classification.
Thanks to our prior segmentation and object filtering step
(see Section 2.2) we already get rid of the clutter.

3.1 Datasets

Our recognition system is trained based on publicly avail-
able image data for the mentioned object classes. Specif-
ically we use the Image-net database [3] for annotated
images of forklifts and pallets. The training data for the
class humans is obtained from the INRIA person dataset
[2]. Since the number of training samples obtained from
these sources is limited, we added further training im-
ages from the internet. This process was automated using
the Microsoft Bing API [1]. All training images obtained
in this way are manually inspected and partly cropped.
In total we obtain a dataset consisting of 360 samples
for each class which we divided into 240 training and
120 testing samples. Note that this data is solely orig-
inated from publicly available image sources. Our sys-
tem was trained and tested given this data. An additional
dataset captured in a typical warehouse environment was
recorded in order to evaluate the generalization ability of
our system. This validation dataset was captured by man-
ually steering a reach truck equipped with an RGBD cam-
era (see 1). We applied depth segmentation and feature
extraction to the depth and RGB images as explained in
Sections 2.1-2.3. The extracted ROIs for obstacle priors
are passed to our classifier (see Section 2.4).

3.2 Results

Table 2 shows the confusion matrix obtained for the test
dataset. It is obvious that the classes can be well dis-
tinguished from each other. The results obtained for the
Forklift class are slightly worse than those for the other
classes. This is probably due to the fact that this class
captured a large variety of different wheeled vehicles typ-
ical for warehouses ranging from small automated lifting
carts to large forklift trucks. The other classes rather vary
in pose variance than actual visual appearance.

Forklift Pallet Human Acc
108 2 10 Forklift  0.900
2 117 1 Pallet 0.975
2 0 118 Human 0.983

Table 2: Confusion matrix obtained for the testing
dataset. Acc denotes the overall classification accuracy
for the given class.

Table 3 shows the confusion matrix obtained for the val-
idation dataset. The classification results are outstand-
ing particularly if one considers that image data recorded
with a Asus Xtion camera inside the author’s test environ-
ment differs from the image data typically found on the
internet. The latter is mostly recorded with cameras hav-
ing larger sensors and hence providing images of higher
quality.

Forklift Pallet Human Acc
93 2 5 Forklift  0.930
2 98 0 Pallet  0.980
3 0 97 Human 0.970
Table 3: Confusion matrix obtained for validation

dataset. Acc denotes the overall classification accuracy
for the given class.

We observed that the convnet features obtained from the
fc-7 layer provide a substantial benefit for distinguish-
ing different classes. Experiments with adjacent layers
showed comparable results whereas those extracted at
lower layers performed worse. Our system relies on lin-
ear kernels for the SVMs which did not show any dis-
advantages in our experiments. Samples of our train-
ing/testing as well as validation datasets are illustrated by
Figures 3 and 4 respectively.

3.3 System requirements

The experiments were carried out on a Dell E6320 laptop
equipped with an Intel Core i7 (dual core CPU) and 8GB
of RAM. Table 4 summarizes the mean run time of the
entire system and the individual components.

Step time [ms]
Obstacle detection 47.26
Feature extraction 124.82

Obstacle classification 15.61

total 187.69

Table 4: Run time for system components.

3.4 Discussion

We demonstrated that the presented approach can be in-
tegrated into robotic systems allowing obstacle detection
and classification at a frame rate of more than 5 Hz.
A large number of applications using Convnets require
GPUs for performance reasons. Our experimental plat-
form, an automated reach truck, is equipped with an elec-
tric engine and would, in fact, have sufficient power to
serve a GPU. However, we dispensed using this architec-
ture for generalization reasons since it is not always avail-
able on mobile robots. The detection does not have to
run at full frame rate for our application. Once an obsta-
cle is detected and classified, a tracker can be initialized



Figure 3: Examples of training dataset. The data contains images of various kinds of forklifts, palleted goods and
humans. It is solely originated from publicly available sources.

to follow its movements. This is why it is not necessary
to apply the ConvNet feature extraction to each detection
ROI. We will exploit this in our future work.

4 Conclusions

This paper introduced an approach to obstacle classifi-
cation using methods of deep learning. We motivated the
benefit of incorporating environment-specific knowledge.
We experimentally evaluated our approach on the exam-
ple of warehouses by specifically learning common ob-
stacle classes expected for this type of environment. Fea-
tures were extracted from labelled images given a pre-
trained convolutional neural network and subsequently
classified using Support Vector Machines. Our system
was trained using publicly available image data. We
tested our approach in a warehouse environment provid-
ing data the system has never seen before. This empha-
sizes our system’s ability to generalize. We expect this
to be highly beneficial for automated forklifts in ware-
house environments providing a significant contribution
towards intelligent robotic navigation.
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Figure 4: Results obtained on the validation dataset captured in a warehouse environment. Our system is able to
detect and recognize objects of the classes: forklifts, humans and palleted goods under varying poses and illumination
conditions.



