
Exploiting Correlations for Efficient Content-based
Sensor Search
Richard Mietz∗, Kay Römer∗

∗ Institute of Computer Engineering
University of Lübeck

23562 Lübeck,Germany
Email: {mietz,roemer}@iti.uni-luebeck.de

c©IEEE, 2011. Personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists
or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

The definitive version was published in the Proceedings of
IEEE SENSORS 2011.

Abstract— Billions of sensor (e.g., in mobile phones or tablet
pcs) will be connected to a future Internet of Things (IoT),
offering online access to the current state of the real world.
A fundamental service in the IoT is search for places and
objects with a certain state (e.g., empty parking spots or quiet
restaurants). We address the underlying problem of efficient
search for sensors reading a given current state - exploiting
the fact that the output of many sensors is highly correlated.
We learn the correlation structure from past sensor data and
model it as a Bayesian Network (BN). The BN allows to estimate
the probability that a sensor currently outputs the sought state
without knowing its current output. We show that this approach
can substantially reduce remote sensor readouts.

I. INTRODUCTION

By equipping more and more real-world entities (e.g.,
things, places, and people) with Internet-connected sensors,
the state of the real world becomes accessible online and in
real time. As searching for static information is a fundamental
service in the Internet today, finding real-world entities with
a given current state (e.g., free parking spots, supermarkets
with short waiting queues etc.) will be of great importance
in the IoT. The underlying problem of finding sensors with
a given current output is a challenging one due to the huge
number of sensors in a future IoT and due to the highly
dynamic nature of sensor output. In addition, wireless sensors
are often battery powered, such that communication with them
must be minimized. This renders traditional techniques such
as streaming sensor output to a search engine or indexing
the output of sensors useless. In previous work [1], we have
investigated prediction techniques, where based on the past
output of a sensor we learn a prediction model to estimate the
probability that a sensor outputs a sought value at the time of
query without knowing the current value of the sensor. Sensors
are read in decreasing order of probability until enough

matches have been found, thus substantially reducing the
number of sensor readouts. However, many sensors are hardly
predictable (such as those measuring weather phenomena) and
the method cannot be applied there. Fortunately, colocated
sensors often produce correlated output (consider two close-
by weather stations) and this is what we exploit in our current
work.

II. APPROACH

In this section we first give a brief overview about Bayesian
Networks. Afterwards we will present our approach by formal-
izing the system and prediction model.

A. Bayesian Networks

A Bayesian Network (BN) is a directed acyclic graph to
model probabilities of random variables and their conditional
dependencies. Every node represents a random variable and
every directed edge between two nodes their conditional
dependencies. Parents of a node n are all nodes which have
an edge to that node. If two nodes are not connected then
they are conditionally independent of each other. Each nodes’
probability distribution is calculated from the conditional
probabilities of its parents. These are often represented as
probability tables. If some variables are observed and this
evidence is entered in the network, this knowledge can be
propagated and so the probabilities can be refined. Solving this
inference problem exactly is NP-hard, but there exist several
approximation algorithms to solve this problem for different
kinds of networks.

B. System Model

We now introduce a formal model of our system. A sensor
s from a set of sensors S which monitors real-world states is
described by the function

s : T 7→ V

where T is the set of discrete points in time and V is the dis-
crete, finite, ordered set of output values of the sensor, e.g., the
noise level of a place could be V = {silent, adequate, loud}.
That is, our system assumes sensors output a discrete, finite
set of states, which are, in practice, inferred from continuous
low-level measurements of one or more different sensors.



The prediction model is represented as

P : S × T × V 7→ [0, 1]

meaning that the model returns the probability that a sensor
s ∈ S outputs a value v ∈ V at a point in time t ∈ T .

A formal definition of a query to our system is given by

Q : T × V × k 7→ R.

We want to find k sensors which output a certain state v ∈ V
at a point in time t ∈ T , which are returned in the set R ⊆ S .

In the optimal case, the prediction model returns high prob-
abilities for sensors matching the query and low probabilities
for ones that do not match. Thus, ideally the query process
only needs to contact the first k sensors on top of the list to
read their current output state. Note that this only holds as
long as there are at least k matching sensors and these are
ranked highest by the model among all sensors. If the ranking
is not optimal, the query process will need to contact more than
k sensors. In the worst case of less than k matching sensors,
even if the ranking is optimal, the query process contacts every
sensor until it can assert that there are not enough hits. Hence,
the metric to evaluate the quality of our proposed approach is
the number of contacted sensors to find k matching sensors.

C. Prediction Model

We design a prediction model that exploits correlations be-
tween sensors. We define the correlation between two sensors
si and sj as

Ci,j =

∑
∀t∈T

1− |si(t)−sj(t)||V|−1

|T |
where the difference of two states is the difference of their
indices in the ordered set V . Ci,j is a value between 0 and 1.
The higher Ci,j , the higher the correlation between the two
sensors.

Based on the computed correlations between all pairs of
sensors, we create a BN. Every sensor s in our model is
represented by a node in the BN. Because of the acyclicality of
BNs, it is not possible to create a complete graph representing
our network. Furthermore, the exponential growth of the
probability table in the number of parents and states per parent
constricts the creation of dense connected graphs. Hence, we
decide to create a simple structure, namely a list structure,
where every node has only one predecessor except the root.
With this structure we still have small probability tables at
every node while having every node connected to the network,
thus correlations between any pair of nodes can be modeled
as the dependency relationship in BN is transitive. Because
evidence propagation has more impact on nearby nodes, we
always connect strongly correlated nodes.

We illustrate the construction of the BN using the following
example with four sensors and their states at four points in time
as shown in Table Ia. The state is either empty (e) or full (f),

thus |V| = 2. The calculated correlation between every pair
of sensors is shown in Table Ib. To construct the mentioned
list structure, we sort the pairs by Ci,j in descending order.
First, the highest-ranked pair in the sorted list is chosen. If
there is more than one pair with the same correlation, one
is chosen randomly. In the example C1,3 is selected as the
first pair to construct the BN. Thus, s1 is now the father of
s3. In the next step every pair which includes sensor s1 is
deleted from the list. Afterwards, among all pairs including
sensor s3, the one with the highest correlation, i.e., s2, is the
next to add to the BN. The process continues until the list is
empty, i.e., every sensor is included in the BN. The resulting
structure is s1 → s3 → s2 → s4 where → represents the
parent relationship and s1 is the root node.

s t1 t2 t3 t4

1 e e f f
2 f e f e
3 f e f f
4 f f e e

(a) Four sensors with their
states at four points in time.

si si Ci,j

1 2 1
2

1 3 3
4

1 4 0

2 3 3
4

2 4 1
2

3 4 1
4

(b) Correlation
between each pair of
sensors.

TABLE I: Example with four sensors.

After construction of the BN, we fill in the probability table
of every node which contains the probability for each state v ∈
V to occur. The root node of the network has no dependencies
and the probability table is therefore identical to the probability
distribution of the states of the respective sensor, which can
be calculated for each state v by

P (s, v) =

∑
∀t∈T

{
1, if s(t) = v
0, else

|T |

In contrast, to populate the probability table for nodes with
parents, we have to calculate the conditional probability for
each combination of states of the node and its parent, i.e.,
for the example above for sensor 3 we need to calculate the
probability of state empty if sensor 1 is in state empty and full
as well as the probability of state full if sensor 1 is in state
empty and full. Hence we have to calculate

P (s, v) =
∑
∀v,w∈V

P (s, v, w)

where

P (s, v, w) =

∑
∀t∈T

{
1, if s(t) = v ∧ pa(s, t) = w
0, else

|T |



where pa(s, t) returns the state of the parent of s at time t.
Whenever evidence for a node is available, the probability

table of that node is updated, i.e., the probability of the current
state of that node is set to 1 and the probability of all other
states are set to 0. Using EPIS sampling [2] on the BN,
the information is propagated through the network, updating
probabilities for each state at every node.

D. Query algorithm

Algorithm 1 shows the query algorithm. The query, placed
by the user, consists of the sought state v and a number k
of matching sensors to find. S denotes the set of sensors
and C the set of sensors which have already been contacted.
Hence, in the beginning C is empty. In each iteration, the
algorithm sorts the sensors from the set S\C, this means all
non-contacted sensors, by their probability to match the users’
query using the probability tables in the BN. The sensor with
the highest probability is then contacted to read its actual state.
The sensor is added to the set of contacted sensors and if
its actual state is the searched one, also to the solution set.
At the end of the iteration the new evidence, i.e., the known
value of the sensor, is inserted into the Bayesian Network
and the network is updated. The iteration is repeated until
enough matching sensors are found or all sensors have been
contacted. The second case occurs if not enough matching
sensors can be found in the network. Finally, the solution set
with all matching sensors is returned to the user.

Algorithm 1 Query algorithm

Require: v ∈ V : State to search for
Require: k : Number of matching entities to find

1: S : Set of sensors
2: P (s, v) : Probability of sensor s for state v
3: s(t) : State of sensor s at time t
4: C ← ∅ {Set of sensors already contacted}
5: R ← ∅ {Set of fulfilling sensors}
6: while |R| < k and |C| < |S| do
7: si ← max

∀s∈S\C
(P (s, v))

8: if si(tnow) == v then
9: R ← R∪ si

10: end if
11: C ← C ∪ si
12: Enter evidence and update Bayesian Network
13: end while
14: return R

III. EVALUATION

We evaluate our approach with a real-world dataset from
Barcelona’s Bicing bicycle rental system [3]. Each rental sta-
tion contains a sensor to count the number of available bikes.
We collected this data from 384 sensors over a period of six
months. As Barcelona is located on the slope of a mountain,
colocated stations tend to show similar usage patterns (see Fig.
1), as people typically ride down the hill but not the other way

around. Hence, on top of the hill the rental stations are often
empty or only a few bikes are available while in the valley
there are a lot of bikes.

Fig. 1: Map of Barcelona’s Bicing rental stations. Circles
indicate sets of stations with highly correlated usage patterns.

A. Experiments

The search algorithm is implemented in Java and makes use
of the SMILE reasoning engine developed by the Decision
Systems Laboratory of the University of Pittsburgh. SMILE is
a library for building and reasoning over probabilistic models
such as Bayesian Network. The data logged from the website
of the rental bike stations is stored in a SQL database for fast
and easy access.

The method as described in Section II is compared with a
naive approach where sensors are read out in random order un-
til a given number of matches has been found. We repeatedly
searched with different state v ∈ V for ten respectively one
matching rental station, i.e., stations having a certain number
of bikes left.

B. Results

The box plots in Figures 2 and 3 show the aggregated
number of sensor readouts of 1000 runs. Each box plot shows
minimum and maximum (the end of the ”whiskers”). The box
itself is representing the medial 50% of the data, i.e., the bot-
tom of the box represents the 25th percentile respectively the
lower quartile, the top the 75th percentile (upper quartile) and
the middle-line the median. When searching for 10 matches
(see Fig. 2), both our method and the baseline have to read all
sensors in the worst case, but in the best and median cases,
our approach is better by a factor of two. Our approach shows
its real potential when only a very small number of matches is
required. When only a single matching sensor is needed (see
Fig. 3), our method is seven times better in the worst case and
three times better in the median case – which is optimal (i.e.,
the first sensor that is read matches).

IV. RELATED WORK

With Dyser [4] we presented a search engine for the IoT.
In the system sensors construct prediction models from past
sensors output. An indexer periodically indexes these predic-
tion models. The user can issue a keyword-based query to the



0

25

50

75

100

...
384

Random Bayesian

N
u
m

b
er

 o
f 
co

n
ta

ct
ed

 s
en

so
rs

Optimum

Fig. 2: Number of sensor readouts when searching for k = 10
matching sensors.

...
384

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

Random Bayesian

N
u
m

b
er

 o
f 
co

n
ta

ct
ed

 s
en

so
rs

Optimum

Fig. 3: Number of sensor readouts when searching for k = 1
matching sensors.

search engine which is segmented into a static and dynamic
part. With the static part the resolver identifies potentially
matching sensors. Afterwards the prediction models of these
sensors are executed to obtain a ranked list of sensors which
are most likely to match the dynamic part of the query.
These sensors are then contacted in the order of their rank
to read their current state until enough matching sensors are
found. However, the prediction models used are based on the
assumption of periodic output patterns of the observed sensors.
In the present work we consider sensors which not necessarily
output a periodic pattern.

There are other systems addressing search for dynamic
content in the IoT such as [5], [6]. Distributed image search [5]
gives the user the ability to specify an image and the system
searches for camera sensor nodes which captured similar
scenes. However, the system needs to contact all sensors,
which will not scale in the growing IoT. Objects Calling Home
[6] develops a search engine to locate lost objects. Although
the system uses probabilities to search for the specified object,
the goal is different from the idea of finding a subset of sensors
having a certain state.

PRESTO [7] concentrates on providing predictions along
with error bounds. The predictions are based on ARIMA
time series models derived from continuous data and therefore
assumes periodic output patterns.

ASAP [8] clusters the sensor network such that nodes with
similar output are assigned to the same cluster. Out of each
cluster, only a subset of nodes is reporting their values. The
values of the other nodes are predicted by a model constructed
based on temporal and spatial correlations inside the cluster.
The difference to our appraoch is that ASAP is used for
periodic reporting instead of search.

V. CONCLUSION

In this paper, we use correlations between sensors to im-
prove the search for sensors that exhibit a given state at
the time of the query. We achieve this by using prediction
models based on Bayesian Networks to communicate only
with sensors most likely matching the search criterion. Our
results show that the number of sensor readouts needed to
find the desired number of matching sensors is significantly
lower than with the baseline method of random search.

VI. FUTURE WORK

In the future we want to overcome the limitations of
Bayesian Networks by using other, more flexible, approaches
to model the correlations between sensors. Additionally, we
want to distribute the data collection and processing inside
the network instead of using a centralized approach in order
to achieve the scalability, that is needed to support a future
Internet of Things.

ACKNOWLEDGMENT

This work was funded by the Federal Ministry of Edu-
cation and Research of the Federal Republic of Germany
(Förderkennzeichen 01BK0905, GLab). The authors alone are
responsible for the content of the paper.

The core of our implementation is based on the SMILE
reasoning engine for graphical probabilistic model contributed
to the community by the Decision Systems Laboratory, Uni-
versity of Pittsburgh (http://dsl.sis.pitt.edu).

REFERENCES

[1] B. M. Elahi, K. Römer, B. Ostermaier, M. Fahrmair, and W. Kellerer,
“Sensor ranking: A primitive for efficient content-based sensor search,”
in IPSN 2009. IEEE Computer Society, 2009.

[2] C. Yuan and M. J. Druzdzel, “An importance sampling algorithm based
on evidence pre-propagation,” in In Proceedings of the Nineteenth Annual
Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann
Publishers, 2003.

[3] Bicing. (2008) Bicing. [Online]. Available: http://www.bicing.cat
[4] B. Ostermaier, K. Römer, F. Mattern, M. Fahrmair, and W. Kellerer, “A

real-time search engine for the web of things,” in Proceedings of Internet
of Things 2010 International Conference (IoT 2010), 2010.

[5] T. Yan, D. Ganesan, and R. Manmatha, “Distributed image search in
camera sensor networks,” in SenSys 2008. ACM, 2008.

[6] C. Frank, P. Bolliger, F. Mattern, and W. Kellerer, “The sensor internet
at work: Locating everyday items using mobile phones,” Pervasive and
Mobile Computing, vol. 4, no. 3, pp. 421–447, jun 2008.

[7] M. Li, D. Ganesan, and P. J. Shenoy, “Presto: feedback-driven data man-
agement in sensor networks,” IEEE/ACM Transactions on Networking,
vol. 17, pp. 1256–1269, 2009.

[8] B. Gedik, L. Liu, and P. S. Yu, “Asap: An adaptive sampling approach to
data collection in sensor networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, pp. 1766–1783, December 2007.


