
LoCaF: Detecting Real-World States with Lousy
Wireless Cameras

Benjamin Meyer, Richard Mietz, Kay Römer
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Abstract—The Internet of Things (IoT) integrates wireless
sensors to provide online and real-time access to the state of
things and places. However, many interesting real-world states
are difficult to detect with traditional scalar sensors. Tiny wireless
camera sensor nodes are an interesting alternative as a single
camera can observe a large area in great detail. However, low
image resolution, poor image quality, and low frame rates as
well as varying lighting conditions in outdoor scenarios make
the detection of real-world states using these lousy cameras a
challenging problem. In this paper we introduce a framework
that addresses this problem by providing an end-to-end solution
that includes energy-efficient image capture, image enhancement
to mitigate low picture quality, object detection with low frame
rates, inference of high-level states, and publishing of these states
on the IoT. The framework can be flexibly configured by end-
users without programming skills and supports a variety of
different applications.

I. INTRODUCTION

An increasing number of sensors embedded into appliances
such as mobile phones, sensor nodes, and sensor networks
are being connected to the Internet. The resulting Internet
of Things (IoT) provides online and real-time access to the
state of real-world objects and places (e.g., length of waiting
queues or traffic jams; occupancy of rooms, buses, or parking
spots). Experts predict that over the next ten years, the IoT
will grow to include tens of billions of embedded sensors,
thus surpassing the number of general-purpose computers that
connect to the Internet today [1]. This massive growth is
only possible if end-users can connect embedded sensors and
publish their output on the IoT without help from experts
– in analogy to the existing Web 2.0, where users not only
consume, but actively contribute information.

Currently, the majority of wireless sensors measure scalar
properties such as temperature, brightness, or acceleration.
However, detecting high-level states of places with such simple
sensors is often difficult if not impossible, or requires many
sensors. Examples include measuring the length of waiting

queues and traffic jams, or the occupancy of rooms and parking
lots. Therefore, miniaturized wireless cameras (e.g., [2]–[4])
are recently gaining momentum as a single camera can observe
a large scene and provides more detail than a scalar sensor.

However, extracting accurate high-level states of places
from images captured by these cameras is a difficult task. Due
to the small size of those cameras, their optics are simple (e.g.,
small aperture, fixed focus) and image quality is low. Further,
they need to capture and wirelessly transmit images for months
or years on a single battery. Therefore, image resolution and
framerate are very low (typically a few images per minute
with a resolution of few tens of kilopixels per image). Finally,
the observed scenes are often exposed to unpredictable and
varying lighting conditions.

Due to those difficulties, general-purpose solutions are dif-
ficult to provide. Rather, the focus has so far been on custom
solutions for specific applications whose development requires
substantial expertise and effort in embedded programming
(to record and extract images from wireless cameras), image
processing (to extract high-level states), and networking (to
publish those states on the IoT). However, if the IoT is to
scale to billions of devices, we need flexible and reusable
approaches that support a wide range of different applications
and can be used without programming skills.

To this end, this paper contributes LoCaF (Lousy-Camera
Framework) – a flexible framework to extract and publish
high-level states of places on the IoT using low-quality wire-
less cameras. LoCaF has been specifically designed to address
the challenges resulting from resource and energy constraints,
poor image quality and low frame rates and aims to support a
wide range of applications under different lighting conditions.
Specifically, it includes energy-efficient image capture, image-
enhancing filters, object detectors, a rule language for state
inference, and methods to publish states on the Web. All
components can be easily configured and composed into a
workflow by users to meet the requirements of a specific
application.

The design rationale, architecture, and components of Lo-
CaF are introduced in Sect. II. Implementation aspects are
briefly discussed in Sect. III. An evaluation of two different
application scenarios is given in Sect. IV. We discuss related
work in Sect. V before concluding the paper with Sect. VI.
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Fig. 1: LoCaF architecture.

II. SYSTEM ARCHITECTURE

Two typical applications we aim to support with LoCaF
(and which will also be considered in the evaluation in Sect.
IV) are monitoring of the occupancy of multiple parking
spots in a parking lot and monitoring of the occupancy of
a room, each with a single wireless camera. For the parking
application, the positions of the different spots have to be
identified in the image, the image has to be enhanced to
compensate variable lighting conditions and to enhance texture
in low-res images, detect movement of cars into and out of
spots using only few images, infer a high-level state (i.e.,
occupied or free) for each spot, and publish this state on a
Web page. The workflow for the room occupancy application
is similar, but differs in important details. For example, instead
of cars in an outdoor environment, the presence of people has
to be detected in an indoor setting.

Consequently, and as summarized in Fig. 1, LoCaF pro-
vides functionality for capturing series of images in an energy-
efficient way (Sect. II-A), for enhancing images to deal with
low image quality (Sect. II-B), for detecting objects with low
frame rates (Sect. II-C), for inferring high-level states from
detected objects (Sect. II-D), and for publishing those states
on the IoT (Sect. II-E). In order to support a wide range of
different applications, alternative solutions for each task need
to be provided that can be flexibly configured and combined
into a workflow by end users without programming skills.

As illustrated in Fig. 1, LoCaF involves three types of
computing platforms: low-quality camera nodes (left) that
capture images and communicate wirelessly with a base station
(middle) that connects to the Internet (right) where high-
level states of places extracted from images are published.
A key question in the design of the LoCaF architecture is
where (i.e., on which of the involved computing platforms) to
execute which of the above tasks. As wireless communication
typically dominates the power consumption of sensor nodes,
a common approach is to extract high-level states from raw
sensor time series on the sensor nodes to reduce the amount
of data that needs to be transmitted wirelessly. While some

wireless camera platforms include substantial memory and
processing resources (e.g., [3], [4]) to allow execution of basic
image processing algorithms on the camera, we intend to
support a wide range of platforms, in particular also ones
at the lower end of the spectrum (e.g., [5]). The latter are
typically equipped with a simple microcontroller and few tens
of kilobytes of RAM. Here, advanced image processing (which
is necessary to deal with low image quality) on the camera
node is infeasible, i.e., images need to be transmitted to the
base station for further processing. However, many camera
modules do support lossy compression of images in hardware
with small power consumption to substantially reduce the size
of the transmitted images. Therefore, LoCaF performs all
image processing on the base station, which also simplifies
reconfiguration of the image processing workflow at runtime
as the code executing on the camera node does not have to be
modified.

In the following sections we describe each of the tasks
performed by LoCaF shown on the bottom of Fig. 1 and
discuss how the specific challenges resulting from constrained
energy and resources as well as from low image quality
and frame rate are addressed. For each task, complementary
approaches are supported to cover the application space. As
discussed in Sect. III, a graphical user interface supports easy
selection and configuration of suitable approaches and their
composition into a workflow in order to realize a specific
application.

A. Image recording

As motivated above, wireless camera nodes do record and
compress images and send them to the base station for further
processing. However, as wireless communication is expensive
in terms of energy consumption, the number of transmitted
images needs to be minimized. To this end, LoCaF supports
event-triggered and time-triggered image capture. The latter
mode is the simpler one and an image is captured at a regular
interval defined by the user.

The event-triggered mode exploits more energy-efficient
sensors to detect if the scene might have changed and only then



captures an image. In particular, we exploit a passive infrared
(PIR) sensor to detect movement in the scene. The energy
consumption of the PIR sensor is negligible compared to the
energy consumption of the radio and camera. A challenge in
this context is that not every movement event reported by
the PIR sensor represents a significant change in the scene.
Therefore, a state machine is used which only triggers an
image recording if a sufficient number of motion events is
observed in a certain time interval.

B. Image processing

The images received for the camera are affected by un-
predictable and varying lighting conditions and other distur-
bances (e.g., moving leaves or flags) that may impair state
detection. Further, image resolution and quality are low, not
only due to the low-quality cameras but also due to the use
of lossy compression algorithms such as JPEG. Therefore,
LoCaF provides four classes of image processing algorithms
to enhance image quality in preparation for object detection:
region selection, lighting compensation, texture enhancement,
and contrast enhancement.
Region selection. Often, the potential locations of objects in
the image are known in advance (e.g., parking spots in a
parking lot) while other image regions (e.g., driveways) need
to be ignored during object detection. Therefore, the user can
mark several polygon regions of interest on an image and
give them descriptive names. Later object detection will be
constrained to those regions. During runtime all pixels outside
selected regions are colored black to obtain a binary threshold
image using the Scan-Line-Fill algorithm [6], which performs
a line-by-line scanning on an image for recognizing coherent
blobs.
Lighting compensation. The illumination has a large influ-
ence on the image scene and a sudden change of the lighting
conditions in the image (e.g., shadows) can lead to inaccurate
object detection. To solve the problem of inhomogeneous
lighting, a homomorphic filter [7] is included in the frame-
work. The filter is based on an illumination-reflectance model,
which describes the image production as a process of lighting
and absorption. As a result of the algorithm, shaded regions
are lightened and overexposed regions are adjusted to a normal
value such that the brightness is normalized and the contrast
is increased. Thereby, changing lighting conditions have a
smaller effect on state detection.
Texture enhancement. Due to the low image resolution,
structures in the scene are often poorly visible in the image.
Therefore, an anisotropic filter [8] is implemented to enhance
the texture quality of the small images generated by the sensor
node to improve the detection of distant objects. It smoothes
the image to reduce noise, but preserves important surface
features such as sharp edges or corners by applying direction-
dependent smoothing. Thereby, objects seem sharply focused
from a large distance in the observed scene.
Contrast enhancement. Additionally, LoCaF provides algo-
rithms to enhance the quality of the pictures with regard to

the ability to distinguish between different objects traversing
the scene. Because the contrast in the scene is pivotal for
the ability to recognize objects, different types of histogram
equalizations are integrated to reallocate the intensity val-
ues of the whole image such that neighboring pixels have
a statistically better contrast. For generating better results,
the equalization is performed adaptively by computing the
reallocation function in local neighborhoods of pixels. This
so-called adaptive histogram equalization (AHE) generates an
image with higher contrast at the object borders and is a
perfect preparation for a segmentation algorithm. To avoid
the generation of artificial features in homogeneous image
segments by the local histogram equalization, the generated
contrast can be limited. This is the so-called contrast-limited
adaptive histogram equalization (CLAHE) [9].

C. Object detection

High-level states of places are typically related to the
presence or absence of certain objects (e.g., people in a waiting
queue, cars in a parking lot). If the appearance of those objects
is known in advance, algorithms (e.g., face recognition) can be
designed that detect objects using only a single image frame.
While LoCaF includes such algorithms as described below, we
aim to support a wide range of applications and therefore need
to detect objects in a more general way based on their mobility.
However, this typically requires multiple image frames. As the
frame rate is low, we use an algorithm that requires only few
consecutive frames. Finally, we need to perform blob detection
to obtain number and area of detected objects in the image,
which serves as input for state inference.

Face detection. We used the efficient face detection algorithm
developed by Viola and Jones [10] which provides high
detection accuracy. It exploits typical features of the human
face, e.g., the eye regions typically appear darker than the nose
and cheek regions. As illustrated in Fig. 2, these features are
detected using so-called Haar base functions, which consist
of the difference of the sums of pixel values in rectangular
regions of the same size. To efficiently compute these features,
a special image representation called integral image is used. A
pixel (x, y) in the integral image is defined as the sum of all
pixels above and to the left of (x, y) in the original image. In
this representation, Haar features can be computed by adding
and subtracting few pixels in the integral image.

The features are computed for each possible position in the
image. To improve computation speed, a cascade structure of
multiple features in order of increasing complexity is used,
i.e., if a feature is found at a certain image position, further
features are evaluated at that position to increase confidence
in the detection.

As a result, all faces in an image are found and all pixels
belonging to detected faces are marked as foreground pixels.
However, if persons are far from the camera, wear sunglasses,
or are not directly looking into the camera, they cannot be
recognized by the algorithm and the more general algorithm
described below has to be used instead.



Fig. 2: Haar feature types: For classification the sums of pixel
values from the patterned rectangles are subtracted from the
white rectangles. The features are based on the gray level
differences in the human face such as the difference between
the shaded eye section and the nose.

Mobile object detection. This algorithm exploits the mobility
of objects on a pseudo-static background to detect them. It
is based on an adaptive background subtraction algorithm
originally developed by Stauffer and Grimson [11]. Different
from previous algorithms, the image pixels are modeled as
a mixture of a small number of Gaussians. Each pixel in a
new image is assigned to one of those Gaussians by checking
if the pixel value is within 2.5 times the standard deviation.
Each Gaussian is also assigned a weight based on the number
of assigned pixels using a moving average filter with learning
rate α. If a pixel cannot be represented by any Gaussian, the
mean value of the closest Gaussian is set to the pixel value,
variance is set to a large value, and weight is set to an initial
small value.

All Gaussians with a weight above a certain threshold,
respectively all pixels assigned to them, are considered as
background, while all other pixels are considered as fore-
ground. As static image parts increase the weight of their
Gaussians over time, static image parts will be classified as
background. All foreground pixels are assumed to belong to
detected objects.

The algorithm has the advantages that foreground objects
are learned very fast (i.e., only few images are needed) and
the objects are not restricted to a given shape. If an object is
entering a scene, it will be recognized until it is not moving
for a certain time, depending on the value of α. Also, uniform
background movements such as waving trees or clouds are
categorized as background processes depending on the number
of used Gaussians.

Blob detection. In general, object detection algorithms mark
individual pixels as belonging to an object (i.e., foreground).
We still need to group these pixels into continuous objects to
obtain their number and size, which forms the input for state
inference described below. For this, a blob detection algorithm
is used which groups continuous regions of foreground pixels
into a blob [12]. The number of distinct blobs and the fraction

of the area of the region (defined by the user as described in
Sect. II-B) containing them are then passed as input to the
state inference.

D. State inference
As a result of object detection, we obtain the number of

distinct objects and the area they cover for each image region
defined by the user. These are important hints on the state of
a place. For example, to detect the number of persons in a
room with a ceiling-mounted camera, we can count distinct
objects as the persons won’t overlap in the image. However,
if we want to measure the length of a waiting queue with a
wall-mounted camera, we would rather leverage covered area
as persons will overlap in the image and cannot be identified
as distinct objects. That is, how exactly number and area of
objects map to a high-level state of a place, very much depends
on the application.

Therefore, LoCaF provides a rule-based language to map
number and area of objects to a set of discrete high-level
states. One state is computed for each image region defined by
the user. The language supports state-based and event-based
mapping. With state-based mapping, the high-level state is
only a function of the current number and area of detected
objects and does not depend on the history. For example, the
state of the room is occupied if there is at least one human
(i.e., mobile object) present, otherwise it is empty.

The syntax for this approach is {count|area}:map:l:u:state
where state is the user-defined name of the high-level state, l
and r are inclusive lower and exclusive upper bounds on the
number or area of detected objects in that image region. Listing
1 encodes the above example (-1 stands for infinity). Further
rules can be added to define more fine-grained occupancy
states (e.g., empty, single person, small group, full).

Listing 1: Example of two map rules for a meeting room.

1 count:map:0:1:free
2 count:map:1:-1:occupied

With event-based mapping, the high-level state is a function
of the previous high-level state and an event, where the event
is defined by a change in number or area of detected objects.
This approach is motivated by the fact that objects are only
detected as long as they move at least occasionally by the
algorithm described in Sect. II-C. For example, a car will only
be detected while entering and leaving a parking spot, but not
while standing still. Here, the detection of the mobile car (i.e.,
the event) triggers a state change to occupied if the state was
empty before and vice versa. The event is defined by giving
a threshold on the number or area of detected objects. The
event triggers if the number or area of objects rises from a
value below the threshold to a value above (i.e., rising edge).

The syntax for this approach is
{count|area}:switch:prevstate:t:state where t is the
threshold on either number or area of detected objects, state
is the name of the state to switch to when the current state is
prevstate and the threshold is exceeded. Listing 2 encodes
the above example. Further rules can be added for additional
states.



Listing 2: Example of a switch rule for a parking spot.

1 area:switch:free:80:occupied
2 area:switch:occupied:80:free

E. State publishing

Finally, the computed state needs to be published. Depend-
ing on the application, states may have to be published in
different formats (e.g., plain text, HTML) over different media
(e.g., Web, file, Tweet, database).

LoCaF supports text-based templates (e.g., plain text,
HTML, RDF) which contain placeholders $regionN , $stateN ,
$timeN , where the name of the region, its state, and a
timestamp are filled in. Regions are consecutively numbered
and N is the number of the requested region. Alternatively,
a loop construct may be used, see Listing 3 for an example.
The text inside the loop is duplicated for each region and the
variables are replaced with the information of that region.

Listing 3: Example of a HTML-template making use of the loop-construct and variables.

1 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML

2 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> <html
3 xmlns="http://www.w3.org/1999/xhtml" xml: lang="de">
4 <head>< t i t l e >State of entities</ t i t l e ></head> <body>
5 <h1>Region states</h1>
6 $forLoop[<p>Region $region has $blobs blobs and is in state $state.</p>]
7 </body>
8 </html>

LoCaF creates an instance of this template whenever a state
changes and then publishes the filled-in template by uploading
it via FTP (user needs to specify the server address as well
as login data) or by posting it as a Tweet on the Twitter
microblogging platform. For each region, a separate Tweet
is posted due to the limitation of 140 characters per Tweet.
Alternatively, LoCaF can insert states into an SQL database
(user needs to specify database address and login data). For
every region a new row consisting of region name, time, and
state is appended to a predefined database table.

III. IMPLEMENTATION

We use an iSense sensor node [5] equipped with a low-cost
camera, capable of taking colored JPEG-compressed pictures
with a resolution up to 640x480 pixels, and a PIR sensor. The
captured images are split into multiple packets and transferred
wirelessly to a gateway sensor module connected via USB to
a netbook.

The main framework component executing on the netbook is
written in C++ and uses the Open Computer Vision library with
algorithms and data structures for image processing. It features
a graphical user interface shown in Fig. 3 which allows the
user to configure the image capture mode and resolution. For a
resolution of 320x240 pixels, up to 15 frames can be captured
per minute.

Further, the interface allows the user to define an image pro-
cessing workflow by selecting appropriate algorithms, setting
their parameters, and by defining the order in which they shall
be executed. As most filters are non-linear, filters can be added
multiple times to the workflow and their order can also be
changed later. Likewise, rules for state inference can be entered
and the publishing mode can be selected and configured. The

Fig. 3: Screenshot of the GUI. The current tab shows how to
customize the filters (left) and the sequence of filters to apply
(right).

GUI also displays raw and processed images to allow for visual
inspection of processing results. All settings can be changed
during operation to optimize detection accuracy.

IV. EVALUATION

For the evaluation of our framework, we investigate two
scenarios. In the first scenario we install the camera sensor
node in a lecture hall in our university observing students
during a lecture. An outdoor scenario where the camera is
monitoring a parking spot is our second use case.

A. Lecture Hall Scenario

While the ultimate goal of this scenario would be to infer
a high-level state (e.g., empty, full) of a lecture hall, here we
investigate the exact number of students as the high-level state.

To recognize as many students as possible, we install the
camera node centered in front of the seat rows. We use
the background subtraction approach to detect objects (i.e.,
students) instead of the face recognition because the faces of
students in the back rows are only a few pixel in height and
width and can thus hardly be detected by the face recognition
algorithm. Initially we use the raw images taken by the camera
without any enhancing filters. In a second step, we play back
the recorded images but this time use different combinations of
image enhancement filters to analyze their impact on detection
accuracy.

We split the scenario into three phases. In the first minutes,
shortly before the lecture starts, students are entering the
lecture hall resulting in high mobility. The algorithm has to
detect many objects and ideally distinguish nearby students



instead of treating them as a single object. In the second
phase, during the lecture, the students are sitting and listening
to the professor. Very little movement is expected and thus
the correct number of students is difficult to estimate. After
the lecture, the students leave the room, again resulting in
substantial mobility, until the room is empty.

Fig. 4: Raw images and images with blobs (manually colored
white for better visibility) from object detection. The number
in lower right corner indicates the actual number of persons
in raw images and number of blobs (estimated number of
persons) in processed images.

Figure 4 shows a selection of raw images along with
processed images overlaid with blobs from the object detection
phase. As can be seen in row a) in Figure 4, the object detec-
tion clearly identifies the first student entering the lecture hall.
Figure 5 compares the estimated and ground truth number of
students over time. One can see that the algorithm over- as well
as underestimates the correct number. The underestimation is
due to the detection of two or more students as one object
(row b) in Figure 4). The overestimation can be explained
by wrong detections resulting from foreground pixels from an
old image not yet being detected as background, although no
object is related to these pixels anymore (row c) in Figure 4)
or due to the legs of students being detected as independent
objects because part of the body is hidden by the table (row
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d) in Figure 4). Although the absolute estimation error is
relatively high with a maximum overestimation error of 130%,
a maximum underestimation error of 70%, and an average
error of 48%, high-level states such as empty or occupied (cf.
Listing 1) could be correctly identified. As discussed below,
the performance can be substantially improved by enhancing
the raw image with different filters.
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In the second phase the number of students stays constant.
As Figure 6 shows, the estimation is always lower than the
actual number. The underestimation is due to some students
not being detected as moving objects but as background as
well as some students hiding behind a laptop thus not being
captured by the camera. The average estimation error of 54%
is higher than in the first phase.

The last phase, when the lecture is over, is characterized
by students abruptly leaving the room. In contrast to the first
phase, where students came in dribs and drabs, all students
walk out at the same time. One can see from Figure 7 that these
movements are a challenge for the algorithm. The background
subtraction needs some time (i.e., frames) to adapt to the
background again. At point 11 in time the state inference
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would, with the rules of Listing 1, incorrectly tag the lecture
hall as occupied although it is already free. However, this
wrong state would only last for some minutes until enough
pictures are received and the algorithm has adapted to the
static background again. At the end, one can see this adaptation
when estimated people count decreases.

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80

N
u
m

b
er

 o
f 
p
er

so
n
s

Picture number [time]

Estimation results for different filter combinations

Actual number of persons
Homomorphic filter + AHE

Homomorphic filter + CLAHE (100)
Estimation without filter

Fig. 8: Estimation using different combinations of filters.

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80

N
u
m

b
er

 o
f 
p
er

so
n
s

Picture number [time]

Estimation results for different parameters for CLAHE

Actual number of persons
CLAHE (150)

CLAHE (100)
Estimation without filter

Fig. 9: Estimation using same filters but different parameters.

To investigate how image enhancement techniques can in-
crease the accuracy of estimation, we play back the previously
recorded images, but apply different combinations of filters
respectively parameters before object detection is executed.

The quality of estimation is strongly dependent on the
choice of filter combinations as one can see in Figure 8.
While a homomorphic filter followed by AHE overestimates,
a homomorphic filter with CLAHE mostly underestimates the
actual number of persons. This is caused by the different
calculation of the reallocation functions in the image plane.
AHE enhances existing image contours in the whole image.
Thereby, fragments in homogeneous image parts could occur
and lead to overestimations in the object detection. CLAHE
has a limitation for the enhanced contrast and prevents the
negative effect of AHE in homogeneous images, depending
on its parameters. From the results we conclude that CLAHE
is more practical in homogeneous environments and AHE in
more cluttered environments.

Not only is the right orchestration of filters crucial for good
results, but also the correct parameterization of the used filters.
Figure 9 compares the results from estimation with CLAHE
filters but with a different number of used color bins. The
results are not as widely spread as in Figure 8, but still show
that different parameters can affect the result significantly.
Both plots show that a wisely chosen workflow can reduce the
estimation error significantly. The best result, an average error
of 12%, is achieved with the CLAHE filter and a parameter
of 100 bins for the 255 color values.

As the user interface shows the processed images after each
filter and supports reconfiguration of the filter chain during
operation, a good configuration can be found empirically.

B. Parking Spot Scenario

In the parking spot scenario we evaluate LoCaF under
outdoor conditions. We install the camera on the top deck of
a car park, monitoring two adjacent parking spots. Figure 10
shows raw images of a parking car along with the processed
images without any filters. As one can see, nearly the complete
car is detected. Only some parts of the windows and lights are
not detected due to transparency of these parts. Thus, as can
be seen in row b), two blobs are detected for the car. We
define a region containing only the left parking spot and use
the switch rule approach with the rule set from Listing 2. As
the car parks, the object area threshold of 80% is exceeded
in the defined region and the state switches to occupied. As
the car is static, the area covered by mobile objects drops
below the threshold again. As soon as the car drives away,
the threshold is exceeded again and the state of the parking
spot switches back to free. A similar rule but with number of
objects instead of covered area and 1 as a threshold would
not perform well as also small detected objects such as a
pedestrian walking by would cause a state change resulting
in a false state classification of the parking spot.



Fig. 10: Raw images and images with blobs from the object
detection of the Parking-spot scenario. The processed image
in row c) shows also the region defined for the left parking
spot.

V. RELATED WORK

Recently, camera sensor networks are gaining momentum
and several papers have been published on camera sensor
nodes, object detection, state inference, integrating sensors
into and publishing data on the IoT. However, the large
majority of existing work focuses on specific applications. As
LoCaF aims at providing a flexible framework that supports
multiple applications in and end-to-end fashion, we focus our
discussion on related work that integrates multiple of the above
aspects.

A. Platforms

Smart camera nodes differ largely in their computational
and storage resources. While some systems (e.g., Citric [3],
Cyclops [4]) provide powerful hardware, capable of processing
images on the node, other systems such as iSense [5] do only
offer a microcontroller with few kilobytes of RAM. Some
systems such as [13] are based on a two-tier architecture with
low-cost camera sensor nodes (Cyclops) on the lower tier and
more powerful webcams and computers on the upper tier. The
upper tier only wakes up and performs object detection and
recognition if the lower tier detects an event of interest. Our
framework intends to support all types of cameras, especially
also ones with very constrained computational resources, and
therefore minimizes processing on the camera nodes.

B. Middleware

A number of middleware systems have been proposed to
integrate sensors into the Web and to process the resulting data
streams. However, they either do not support image sensors, or
require that the user implements image processing operations
himself.

In [14], Aberer et al. present Global Sensor Networks
(GSN), a scalable infrastructure to integrate heterogeneous
sensor networks with the Internet. They introduce the virtual

sensor abstraction which aggregates sensor time series from
multiple other sensors in real time using a streaming SQL
query. Thus, the system is suitable for end users who are
capable of formulating SQL queries. However, the system
is intended for scalar sensors – image processing is not
supported.

Pachube [15] is an online platform for managing feeds
from sensors. An API allows creating, deleting, updating, and
viewing data streams for sensors. Thus, a user can either
actively publish sensor data or passively consume data pub-
lished by others to create new applications. Hence, Pachube
offers a middleware layer to create IoT applications. However,
processing of sensor data to detect objects in images, for
example, is left to the user.

With the web frontend of ParaImpu [16], the user can create
mashups, called connections, by virtually wiring sensors and
actuators. The user can either use real sensors or virtual input
such as posts from Twitter. Similar to sensors, actuators can
be created for real actuators or websites such as Twitter,
Facebook, or Google Calendar. The user can write rules to
define how received data from the sensor should be filtered
and mapped to an output for the actuator. Although the system
allows combining virtual as well as real sensors and actuators,
there is no possibility for using other than text input.

IrisNet [17] employs a two-tier architecture to process data
from several multimedia sensors. The lower level consists
of the sensors connected to Sensing Agents (SA) responsible
for data collection and filtering. On the upper-layer, Orga-
nizing Agents (OA) take care of data storage and querying.
Application-specific code needs to be provided by the user for
the SA to extract meaningful information from raw multimedia
data, for the OA to provide a storage scheme, and for an
application user interface. Thus, the system is very flexible
but processing of sensor data, e.g., to detect objects in images
is left to the user.

Deep Vision [18] uses a network of Cyclops vision sen-
sors, capable of doing simple moving object detection and
motion flow estimation, to monitor a certain region. Additional
information (e.g., location) of the vision sensors is stored
in a database. The user can interact with the network by
querying a central computer in a high-level SQL-like syn-
tax. Queries are transformed to low-level image processing
operations and routed to the nodes. Additionally, information
from the database is retrieved. All information is collected
at the central computer and returned to the user. Due to
the on-node processing with resource-restricted hardware, the
system only uses simple detection algorithms not suitable
for use in scenarios with changing environmental conditions.
Additionally, the system doesn’t allow to postprocess the
gathered information in terms of inferring high-level states
and publishing on the Internet. Finally, the user needs to learn
a query language to interact with the system.

C. Applications

Several applications exploiting smart cameras have been
described in the literature. However, they are designed for a



very specific purpose and cannot be applied to a wide range
of different applications and scenarios as it is the purpose of
LoCaF.

Facet [19] is a software framework that runs on mobile
phones with cameras to track mobile objects using multiple
phones installed at fixed locations in a building. A simple
background subtraction algorithm is used to detect mobile
objects. The system is limited to a single application (tracking)
and does not support detection and publishing of high-level
states as LoCaF does. Also, the algorithms are not suitable
for outdoor applications due to variable lighting conditions.

In [20], Bamis et al. describe BehaviorScope, a system using
multi-modal wireless sensors such as PIR sensors and cameras
deployed in houses to monitor elderly people. Depending on
the application and privacy requirements, raw or preprocessed
sensor data is transmitted to a central server to infer the
activities of the inhabitant. Thus, the system is tailored to
monitoring people, whereas LoCaF supports flexible detection
and publishing of a range of different high-level states of
places.

MiceNet [21] uses camera-equipped sensor nodes to track
lab mice in cages. The JPEG-compressed images taken by
the camera are transmitted wirelessly to a base station where
further processing is performed to analyze the activity of
different mice. Although the architecture and used hardware
is similar to our approach, it is tailored to mice experiments
and thus limited to tracking, whereas LoCaF supports flexible
detection and publishing of a range of different high-level
states of places.

TigerCense [22] describes a deployment of camera- and
PIR-equipped sensor nodes to help researchers count and
analyze the movement of tigers. The camera of a sensor node
is triggered by movements detected by the PIR-sensor and
images are stored on an SD-Card. As soon as a connection
to the gateway exists, pictures are transmitted wirelessly and
afterwards uploaded to a database in the Internet. Although the
prototype is not limited to monitoring of tigers, it is very lim-
ited by only taking pictures without any image enhancement
or automatic post-processing.

VI. CONCLUSION

Within a decade, embedded devices will likely form the
majority of the participants on the Internet. The states of
real-world things and places observed by embedded sensors
will be available online and in real-time in the resulting
Internet of Things. We have presented the LoCaF framework
which allows to detect and publish high-level states of places
using low-quality wireless camera sensors. Our emphasis is
on providing an end-to-end solution that supports a range of
different applications, to be used by domain experts with-
out programming skills. With LoCaF, users can select and
configure function blocks and combine them into a complete
workflow from energy-efficient image capture to publishing
of high-level states on the Web. Thereby, users can not only
consume, but also actively contribute real-time data to the
Internet of Things.
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[19] P. Bolliger, M. Köhler, and K. Römer, “Facet: towards a smart camera
network of mobile phones,” in Proceedings of the 1st international
conference on Autonomic computing and communication systems, ser.
Autonomics ’07, ICST, Brussels, Belgium, 2007.

[20] A. Bamis, D. Lymberopoulos, T. Teixeira, and A. Savvides, “The
behaviorscope framework for enabling ambient assisted living,” Personal
Ubiquitous Comput., vol. 14, pp. 473–487, September 2010.
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