
Work in Progress: Resource-Aware Fault
Localization in Large Sensor Networks

Richard Mietz, Kay Römer
Institute of Computer Engineering, University of Lübeck, 23562 Lübeck, Germany

Email: {mietz,roemer}@iti.uni-luebeck.de

c©IEEE, 2012. Personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists
or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

The definitive version was published in the Proceedings of
IEEE DCOSS 2012.

Abstract—Sensor networks are exposed to hostile environments
that may cause failures of single nodes and communication links
which affect the whole network. Localizing the cause of the
problem in space and time requires to collect diagnostic data from
the network. Due to resource and energy constraints, however,
it is not possible to continuously collect detailed diagnostic data
from all nodes. We therefore propose an incremental approach
where first data is logged to flash memory and later the user can
pose a sequence of diagnostic queries with decreasing scope and
increasing level of detail to pinpoint the cause of the problem.

I. INTRODUCTION

Sensor networks are often exposed to unpredictable and
hostile environments that lead to performance problems or
even (partial) failures of individual nodes or communication
links. Such localized problems, however, often have an impact
on the whole network and it is typically very difficult to
localize the cause (i.e., nodes and/or links) of the problem.
For example, packet drops or delays due to a single bad link
in a collection tree may lead to lost or delayed packets from
all nodes in the subtree of the bad link. As the topology of
the collection tree is dynamically changing, it is difficult to
identify the bad link. Often it is even difficult to identify the
point in time when the cause of the problem occurred. For
example, in a network that detects events, the lack of event
notification messages might be caused by the absence of events
or by a failure in the network leading to loss of the notification
message.

Localizing the cause of the problem in space (i.e., which
nodes?) and in time (i.e., when did it occur?) requires vis-
ibility into the state of the network by collecting diagnostic
information in addition to the actual sensor data. However,
given the limited resources and energy, it is often not feasible
to continuously collect detailed diagnostic data from all nodes
in the network.

We therefore propose an incremental approach to fault
localization, where a user poses a sequence of diagnostic

queries with decreasing scope and increasing level of detail
as illustrated in Fig. 1. Here, scope refers to the set of nodes
that might be the cause of the problem and a time frame during
which that cause appeared. Initially, the user might start with a
scope that includes all nodes in the network and a timeframe of
the week during which the problem was first noticed. However,
only highly aggregated information can be collected from each
node (e.g., the maximum forwarding delay at each node during
the whole week) as otherwise a huge amount of data would
have to be extracted from the network due to the large scope.
From the aggregated data the user can conclude which nodes
have a large maximum delay and pose another query to these
nodes (i.e., reduced spatial scope) to obtain maximum delays
for each day in the week (i.e., increased level of detail). From
the results the user may conclude on which days the problem
occurred and request hourly maximums (i.e., increased level
of detail) only for those days (i.e., reduced temporal scope)
and so on until the problem has been tracked down to a scope
that is small enough.

1. Query whole WSN 

2. Aggregated view of WSN 3. Recognize a problem 

4. Query subset of nodes 

5. More detailed view of WSN subset 6. Problematic region identified 

7. Query a specific node 

8. Very detailed view for one node 9. Problem occurred 20 min. ago 

Fig. 1: The user poses a sequence of diagnostic queries.

In this paper we report about our ongoing work to design
and implement a system to support such incremental diagnos-
tic queries. The use of the system can be divided into three
phases. In the initialization phase, the user sends a logging
specification to the network which specifies data (e.g., the
forwarding latency of certain types of messages or battery
voltage) that should be logged into flash using a ring buffer
of a user-defined size. During the collection phase, all nodes
continuously log the requested data locally. Note that recent
flash technologies are very energy efficient. Finally, during the
diagnosis phase the user poses incremental diagnostic queries
as described above to extract aggregated versions of the data
collected in flash from a given set of node. Each query contains
a scope and a resource budget (e.g., amount of data, amount
of energy, lifetime reduction) the user is willing to spend
for the execution of this query. To implement the actual data



reduction and aggregation on the nodes, the user also specifies
a set of LODs (level of detail), where each LOD is a user-
defined data aggregation/reduction function that compresses
the previously collected data. The system then automatically
selects the appropriate LOD for a query to meet the user-
defined budget.

II. RESOURCE-AWARE DIAGNOSTIC QUERIES

We briefly describe each of the three phases outlined above
along with the different specifications used during each phase.

A. Initialization and Collection Phases

Initially, the users specifies what to log, on which nodes,
when to log, as well as the size of a ring buffer in flash
memory to use for logging. Multiple logging jobs can be
defined for different sets of nodes. The logging specification
is then compiled into a compact byte code and sent to all
affected nodes in the network, where an interpreter executes
the specification in order to log the requested data.

Listing 1: Logging specification for aspect Energy and Latency written in YAML

1 ---
2 #Log energy of every node every 60 seconds with a budget of 10 kb of memory
3 all:
4 Energy:
5 budget amount: 10
6 interval: 60
7 #Log lantency of nodes 99f8 and 98dd with their neighbors with 20 kb of memory
8 99f8,98dd:
9 Latency:

10 budget amount: 20
11 ...

Listing 1 shows a logging specification written in YAML
(YAML Ain’t Markup Language). The user defines several
logging jobs by selecting either all nodes or a list of nodes
(cf. line 3 and 8), the aspects to log (cf. line 4 and 9), and
a budget in terms of number of kilobytes of flash memory
(cf. line 5 and 10) a node is allowed to use for logging. At
the moment our system supports logging remaining energy,
message forwarding latency, as well as message drops. When
logging the remaining energy, the user has to additionally
define a logging interval (cf. line 6). Data for latency is logged
whenever the ”normal” application running on the node sends
respectively receives a message.

In the collection phase the nodes log a timestamp and
the remaining energy every 60 seconds. For each transmitted
message sender and receiver log the timestamp, address and
a hash of the message. Hence, the given log budget has to
be divided among the specified node and all of its neighbors
which he communicates with. Later, when needed, the logs of
the neighbors are transferred to the main node, are compared,
and the latency is calculated by subtracting the timestamps of
messages with the same hash.

B. Diagnosis Phase

In the diagnosis phase, the user poses a sequence of diag-
nostic queries with decreasing scopes and increasing detail. In
addition, each query specifies a resource budget that the system
can use to execute the query. In order to meet the specified
budget, the system aggregates and reduces that data collected
in flash memory. For this, the user first has to specify a set of

LODs, each of which consists of a set of functions to filter or
aggregate the collected data.

The data collected in flash has the structure of a table
with one column for each collected aspect (e.g., timestamp,
remaining energy) and one row for each logging entry. Table
I (a) shows an example for energy logs with columns for
the timestamp and the energy value. The functions defined
by a LOD transform this table by deletion of columns,
sorting columns, filtering rows by different criteria, different
aggregations over columns (e.g., count, min, max, average,
histograms), mapping a set of values to a single value, and
reducing the precision of values. A LOD is an atomic operation
on the table, i.e., all functions of a LOD are executed on the
table, producing a new output table. The LODs have to be
arranged in such a way that the output table of LOD x is the
input table for LOD x−1. Thus, the logging node can reduce
the LOD of the table and hence, the number of bits needed to
encode the table LOD by LOD. Furthermore, every node on
the route to the sink is able to further reduce the LOD of the
table received from another node if necessary.

Listing 2: LOD description with five levels

1 ---
2 Energy:
3 #Data or structure is not modified
4 4:
5 - Original
6 #Reduce the precision of the timestamp containing column to 24 bits
7 3:
8 - Precision: [time,24]
9 #Keep only low energy values and remove the time column

10 2:
11 - Filter: [value,’<’,100000]
12 - Delete: [time]
13 #Map energy values and reduce precision of that column to 2 bit per value
14 1:
15 - Map: [[1:[0,1000], 2:[1000,10000], 3:[10000,.inf]], value]
16 - Precision: [value,2]
17 #Only count number of rows (i.e. number of energy values lower than 100000]
18 0:
19 - Count
20 ...

A sample LOD specification is given in Listing 2. Five
LODs are defined (lines 4, 7, 10, 14, and 18). On the highest
LOD (lines 4 and 5) the data is kept as stored in flash, i.e.,
without any function applied to it. The next LOD reduces
the precision of the timestamps from 32 to 24 bit by setting
the least significant bits to 0 such that they do not have to
be transmitted. LOD 2 has two functions. First, only energy
values smaller than the given threshold are kept and secondly,
the timestamp column is deleted. The map function in LOD
3 maps energy values to three different categories: values in
the range 0-1000 are mapped to category 1, values in range
1001-10000 are mapped to 2 and so on. The precision is then
reduced to 2 bits to encode the three categories. The final LOD
computes the number of remaining rows in the table, i.e., the
output table consists of a single column with one row holding
the count. Again, the specification is compiled to a compact
byte code and sent to the network, where an interpreter uses
the specification to execute queries.

Listing 3: Query for node 99f8 to deliver energy with at LOD 1

1 ---
2 #Get energy monitoring data of node 997f on level 1
3 99f8:
4 Energy:
5 level: 1
6 ...



Timestamp (32) Energy (32)
1317889870 11000000
1317889930 11000000
1317889990 11000000

...
...

1317975990 99000
...

...
1317983190 8000
1317983250 7600

(a) LOD 4: 1702 bits

→

Timestamp (24) Energy (32)
1317889792 11000000
1317889920 11000000
1317889920 11000000

...
...

1317975936 99000
...

...
1317983104 8000
1317983232 7600

(b) LOD 3: 1494 bits

→

Energy (32)
99000

...
8000
7600

(c) LOD 2: 862 bits

→

Energy (2)
3
...
2
2

(d) LOD 1: 82 bits

→

Energy (2)
13

(e) LOD 0: 32 bits

TABLE I: Size reduction of monitoring data by applying different LODs.

Each such query is encoded in a specification as shown
in Listing 3. Besides the involved nodes (line 3) and the
aspect (line 4), the LOD (line 5) needs to be given to issue
a query. The addressed nodes read their data from their flash
and execute LOD after LOD until the desired one is reached.
The query specification is also compiled to byte code and sent
to the query interpreter executing on each node.

III. NEXT STEPS

In the final version of the system the user would not directly
specify the LOD for a query, but the budget he is willing to
spent to execute the query. The network will translate the given
budget to the highest LOD that does not exceed that budget.
In a first step the user should be able to define the budget in
terms of network bandwidth, but later on it should be possible
to define it in terms of lifetime reduction of the network.

Apart form the implementation of the WSN components,
we are working on a graphical user interface (GUI) to support
the user by providing wizards to create and edit the necessary
specifications. The sensor network, query scopes, and the
received data will be visualized by the GUI to easily inspect
the state of nodes and the complete network, also in the field.

IV. PRELIMINARY EVALUATION

As our focus is on resource-awareness, we illustrate the data
reduction that can be achieved using the example specifications
given in this paper. Firstly, we show by how much byte code
compilation can reduce the size of specifications that need to
be sent to the network. Secondly, we show how different LODs
reduce the encoded size of logging data collected by a node.

Table II shows the original (comments removed) and com-
piled size of the logging, LOD, and query specifications from
Sect. II in bits as well as the savings. As one can see, we save
around 90 % of bits for each specification.

Specification Original size (UTF-8) Compiled size Savings in %
Logging 976 78 92.0

Level 2056 207 89.9
Monitoring 376 28 82.5

TABLE II: Size reduction of specifications by compilation.

To evaluate the reduction of monitoring data by a LOD
specification, we use the raw data collected by a sensor node
shown in Table I (a), which contains 26 rows (each vertical dot
represent 10 rows of data) of logged energy data. The numbers

in the column header depict the number of bits used to encode
a value in that column. We use the LOD specification from
Listing 2 to reduce the number of bits needed to encode the
table. In section II we described already how the tables are
altered on each LOD. The number of bits needed to encode
these five tables are shown in the subcaptions of Table I.
It can be seen that a lower LOD needs less bits to encode.
The table for LOD 0 compared to LOD 5 saves 92.1% of
bits. However, expressiveness of the table is also drastically
reduced. Nevertheless, a table on a low LOD can still give
useful hints on a potential problem. In the example, the user
can see that there are already some nodes with energy values
below a certain threshold indicating that these nodes may die
soon.

V. RELATED WORK

In TinyDB [1] the WSN acts as a database which can
be queried by the user using an SQL-like query language
to retrieve sensor readings or data from previously installed
logging queries. Queries are optimized before dissemination
to the network to save resources. However, there is no support
for specifying a resource budget for a query.

The work described in this paper builds on our previous
work on Visibility levels [2], a monitoring system that allows
to manage the trade-off between the visibility of node state
and resource consumption. By annotating the source code,
program variables can be logged at execution time. Addi-
tionally, the user defines compression schemes similar to our
level specification and a resource budget for storing the logged
data. The annotated code is compiled to executable code
which automatically compresses data if needed to not exceed
the given budgets. In contrast, our current work addresses
performance debugging at the network level. Also, we avoid
the need to recompile and upload application source code
when a specification is changed.

VI. CONCLUSION

We presented an approach for resource-aware performance
debugging of resource-constrained WSNs, where the user can
pose diagnostic queries with decreasing scopes and increasing
detail, offering the user full control over the resources used to
execute these queries.



ACKNOWLEDGMENT

This work was funded by the Federal Ministry of Edu-
cation and Research of the Federal Republic of Germany
(Förderkennzeichen 01BK0905, GLab). The authors alone are
responsible for the content of the paper.

REFERENCES

[1] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb: an
acquisitional query processing system for sensor networks,” ACM Trans.
Database Syst., 2005.

[2] J. Ma and K. Römer, “Visibility levels: managing the trade off between
visibility and resource consumption,” in Proceedings of the 4th interna-
tional conference on Real-world wireless sensor networks, 2010.


