
A Unified Visual Graph-Based Approach to Navigation for Wheeled
Mobile Robots

Jan Hartmann, Jan Helge Klüssendorff, and Erik Maehle

Abstract— The emergence of affordable 3D cameras in recent
years has led to an increased interest in camera-based navi-
gation solutions. Yet, while there have been significant efforts
in the field of visual simultaneous localization and mapping
(VSLAM), a complete navigation package that could rival
popular laser-based solutions is not available. In this paper, we
will therefore introduce visual solutions to SLAM, localization,
and path planning in a unified graph-based framework with the
main target of wheeled robots in industrial applications. Novel
solutions will be introduced in the fields of place recognition and
loop closing, localization, and path planning. Our algorithms
will be built for the Robotic Operating System (ROS) and fully
replace the popular gmapping and AMCL algorithms.

I. INTRODUCTION

Mobile robot navigation generally requires solutions to
three different problems: mapping, localization, and path
planning. First, a map of the environment has to be built.
Assuming that the robot initially has no knowledge of the
environment and its own position, the robot position has to be
estimated while building the map, which is therefore called
simultaneous localization and mapping (SLAM). Second, the
robot has to localize itself in the environment. Last, a short
and feasible path has to be estimated when driving to a
specific place while avoiding obstacles.

Today’s state-of-the-art navigation approaches are mainly
designed for laser range finders (LRF). They solve mapping
and localization in a probabilistic fashion, e.g. with particle
or extended Kalman filters. The path planing is addressed on
a 2D occupancy grid map created by the mapping system.
A camera-based system using the currently popular RGBD
(color + depth) cameras has several advantages over the
traditional solutions. Most importantly, the camera image
enables the SLAM system to close large loops by incor-
porating image features into the map and therefore increases
the scalability of the algorithm. On the downside, the limited
field of view and high image processing requirements pose
challenges to developing similarly accurate and real-time
capable algorithms.

Especially in industrial applications, e.g. automated clean-
ing and logistics, camera-based navigation may conquer
new fields for autonomous mobile robots, due to the low
sensor cost and the aforementioned scalability. To exploit
the advantages of camera-based navigation while providing
a robust, accurate, and real-time performance, in this paper,
we will introduce a unified graph-based solution to mapping,
localization, and path planning. We assume the target systems

The authors are with the Institute for Computer Engineering, University
of Lübeck, Germany

Contact: hartmann@iti.uni-luebeck.de

to be wheeled robots and therefore use wheel odometry
to stabilize the visual position estimation. We will further
utilize the recently introduced BRISK [1] feature descriptor
to most efficiently solve the problem of place recognition.
New approaches will be introduced in the fields of loop
closure, graph-based localization, and path planning. The
source code of the algorithms presented in this paper as well
as the experimental datasets will be made publicly available
with the publication of this paper1.

A. Related Work

VSLAM has been a field of active research in recent years.
The SLAM problem is, in contrast to this work, typically
solved using cameras only. Different approaches have e.g.
been published by Endres et al. [2], Strasdat et al. [3],
and Dryanovski et al. [4], all of which use a graph-based
SLAM framework. Graph-based SLAM [5] builds a map by
linking particular places (nodes) based on sensor information
obtained at the nodes. The graph-based approach is therefore
very scalable, as large accumulated errors may be corrected
by least squares optimization. It benefits from vision-based
approaches, which enable the position-independant linking of
nodes based on the camera images. Efficient realtime capable
graph optimizers are available [6], [7].

Camera-only approaches have some important disadvan-
tages as compared to our approach when considering indus-
trial applications. The robot movement needs to be estimated
from the camera images. This is, on the one hand, time
consuming, real-time operation is therefore problematic. On
the other hand, the robot movement can only be estimated if
there are sufficient descriptive image features in the range of
the camera. Solutions to localization and path planning in a
visual graph-based map have, to the best of our knowledge,
not yet been published.

Considering LRF-based navigation, robust and efficient
solutions to mapping, localization, and path planning have
been available for many years. Several systems are, for
example, integrated in the Robot Operating System (ROS)2.
A particle filter-based mapping approach (gmapping, [8]) is
used to build an occupancy grid map. The localization part is
then solved using an adaptive monte carlo localization (amcl,
[9]), which is also based on particle filters. Path planning is
performed in the move base framework, where, based on the
occupancy grid map, a global planner searches for a shortest

1http://www.iti.uni-luebeck.de/navigation.html
2ROS is currently the most widely used mobile robot framework and the

algorithms in the ROS navigation stack (http://www.ros.org/wiki/
navigation) will therefore be considered as benchmarks in this paper.

path to the goal and a local planner, incorporating current
sensor readings, issues the actual commands to follow the
global path while avoiding obstacles.

The remainder of this paper will be structured as fol-
lows. First, the general graph-based navigation framework
will be introduced in Sec. II, including the different parts
of the SLAM, localization, and path planning algorithms.
Experimental results were conducted on a custom large-scale
dataset. A comparison of the performance of this paper’s
approach and the algorithms provided by ROS will be given
in Sec. III. The results will finally be concluded in Sec. IV.

II. VISUAL GRAPH-BASED NAVIGATION

This section describes the general design of our graph-
based navigation approach. We assume a similar workflow
as with LRF-based solution, where initially a map of the
environment is built using a SLAM algorithm. Here the focus
is on building a globally consistent and metrically accurate
map. We simplify this task by reducing the robot motion
to two dimensions even though the camera provides 3D
information.

In operation, the robot position is then estimated using
a localization algorithm given the SLAM map. Here the
focus is on accurate positioning, robustness to perturbations,
and the ability to relocalize. The robot position is used
to drive to specific points of the map. Here the focus is
on finding an optimal path and avoiding obstacles. The
approaches presented in this paper are largely based on our
previous experiences with probabilistic as well as graph-
based VSLAM systems [10], [11].

In the remainder of this section, first, the SLAM, localiza-
tion, and path planning algorithms will be briefly outlined.
Then, the different common modules of the algorithms will
be introduced in more detail.

A. SLAM

The task of the SLAM algorithm is to build a graph rep-
resentation of the environment. It uses both wheel odometry
and 3D camera information. New nodes will be added to
the SLAM graph whenever a pre-defined distance to the last
node is exceeded (in our experiments this is set to 0.3m
or 10◦ of rotation). An edge with low uncertainty is first
established based on the wheel odometry. Links to previously
visited parts of the environment are searched using feature
descriptors gained from the current camera image. Based
on the descriptors, similar nodes in the graph are found
and transformations to the most similar nodes are estimated.
These transformations form edges of higher uncertainty. The
odometry-based edges thus form the backbone of the SLAM
graph and stabilize it against the (possibly erroneous) visual
edges. Using the newly established edges, the SLAM graph is
optimized to obtain a globally consistent map with minimal
edge errors.

The outline of the SLAM algorithm is given in Alg. 1.

Algorithm 1: SLAM

if the robot has travelled a given distance then
extract features from the current image;
add new node;
find potential neighbors by place recognition;
foreach potential neighbor do

Estimate transformation between new node and
potential neighbors;
if tranformation is feasible then

add link

optimize graph;

Algorithm 2: Localization

if the robot has travelled a given distance then
extract features from the current image;
find potential neighbors in radius of 1m;
S = ∅;
foreach potential neighbor do

Estimate transformation T to current position;
if T is feasible then

S ← S ∪ T

if |S| == 0 then
find potential neighbors by place recognition;
foreach potential neighbor do

Estimate transformation T ;
if T is feasible then

S ← S ∪ T

if |S| > 0 then
interpolate between all feasible transforms in S;
set current position to interpolated transform;

else
estimate current position using wheel odometry;

B. Localization

The localization performs a mere position estimation in a
map previously built by the SLAM algorithm. Localization
in SLAM graphs has, to the best of our knowledge, not
been investigated yet. However, graph-based maps provide a
simple means to seamlessly integrate a relocalization scheme
to solve such problems as the “kidnapped robot” or initial
localization, where the true robot position may vary greatly
from the last known position.

In our approach, we largely follow the SLAM algo-
rithm outline (see Alg. 2). Short-term position estimates
are obtained from the wheel odometry. To couteract the
accumulating odometry error, the robot is relocalized after it
has moved a pre-defined distance (as in the SLAM algorithm
0.3m or 10◦ of rotation). To solve the relocalization problem
while ensuring that no wrong relocalizations are performed,
this is done in two steps. First, the transformation to nodes
close to the current position is estimated. Only if no such

Algorithm 3: ConvertToOccupancyGrid

if a 2d map is requested then
setup occupancy grid using graph dimensions
foreach node in the graph do

retrieve depth image from node;
transform depth image into laser scan;
project laser scan onto 2d occupancy grid

publish occupancy grid

transformation could be found the place recognition is used
to find additional neighbors in the whole map and thus
perform relocalization. In either case, all feasible transfor-
mations that could be obtained are interpolated to find the
most stable solution.

C. Path Planning

Path planning is typically performed on 2D occupancy grid
maps. In this work, rather than developing a completely new
path planning algorithm, existing solutions will be utilized
by extracting 2D occupancy grids from the graph map. Our
solution provides an interface to the move base framework3

of ROS. A 2D occupancy grid map of the environment is
generated as shown in Alg. 3. Information on the robots
movement and its position are provided by wheel odometry
and the localization algorithm. The sensor information for
obstacle avoidance is gained by converting the depth images
of the Kinect camera to 2D laser scans.

D. Modules

We have chosen a fine-grained decomposition of the
algorithms in several different modules, which the graph
backend, i.e. the SLAM and localization algorithms, utilize
as shown in Fig. 1. Our hope is to be able to easily replace
parts of the algorithm to adjust to new developments or
different applications. Each module is implemented as a ROS
node, i.e. a distinct process, and modules communicate over
defined message interfaces. In the remainder of this section,
we will describe each module in detail.

1) Feature Extraction: Feature extraction is a vital part of
visual navigation. Feature descriptors are used to efficiently
estimate the transformation between two images or to find
similar images. Popular feature detectors and descriptors that
have been used in VSLAM include gradient histogram-based
approaches as the Scale-Invariant Feature Transform (SIFT,
[12]) or Speeded-Up Robust Features (SURF, [13]) and
binary descriptor approaches as Binary Robust Independent
Elementary Features (BRIEF, [14]) and Oriented FAST and
Rotated BRIEF (ORB, [15]).

In this work, Binary Robust Invariant Scalable Keypoints
(BRISK, [1]) are used to compute feature descriptors for
new nodes. BRISK is aimed to combine the accuracy of
gradient histogram-based approaches, including robustness to
image transformations, at a significantly faster computation

3http://www.ros.org/wiki/move_base

Link Estimation

Place
Recognition

Graph Backend

Feature
Extraction

Graph
Optimization

new node

potential
neighbors

feature
descriptors

pair of nodes

transform
optimized
graph

current graph

Fig. 1: General dataflow between the different modules used
by the SLAM and localization algorithms.

and matching performance. While the computation speed
is a necessary requirement for realtime performance, an
invariance to image transformations will enable us to match
nodes under larger viewpoint changes.

2) Place Recognition: The place recognition module finds
similar nodes in the graph map based on the feature descrip-
tors. It is therefore an important part of loop closure, i.e.
finding links to previously visited parts of the map, as it
enables a position-independant solution to the problem. The
SLAM and localization algorithms are therefore able to close
arbitrarily large loops and similarly solve the relocalization
problem.

Visual vocabulary or bag-of-words approaches, e.g. [16],
[17], are commonly used for place recognition in VSLAM.
A very efficient vocabulary tree-based approach has been
presented by Nistér and Stewénius [18], which has already
been used in SLAM [19]. As such solutions to place recog-
nition are designed to be used with floating point descriptors
as SURF or SIFT, for this work, we have developed a
novel simple and efficient method for place recognition
using binary features, which is inspired by Locality Sensitive
Hashing (LSH, [20]).

Locality Sensitive Hashing limits the search space for
matching binary descriptors by comparing only those de-
scriptors that have the same hash value for a given hash
function. The hash function in the case of binary descriptor
simply samples a random set of descriptor bits to form the
hash value. LSH uses a set of random hash functions to
increase the chance of finding the best match. This can be
efficiently implemented using several hash tables, where for
each hash value a reference to all descriptors that have the
corresponding hash value is stored.

We follow a similar idea, but rather than storing a refer-
ence to a specific descriptor, we store a reference to a node.
If we want to find similar nodes to a specific query node,
we then count how often node numbers occur at the hash
values of the query node’s descriptors. The nodes with the
highest number of occurences are the most similar. Fig. 2
further illustrates the place recognition process.

3) Link Estimation: The link estimation module calculates
a feasible transformation between two nodes. Features corre-
spondences are found by matching the feature descriptors for

0 1: 0

1 1: 1

2 1: 2

3 1: 2

hash value node: #node A

0 1: 0

 2: 3

1 1: 1

 2: 1

2 1: 2

 2: 0

3 1: 2

 2: 1

hash value node: #
A1

A2

A3

A4

A5

hash
2

1

2

3

3

node B

B1

B2

B3

B4

B5

hash
0

0

0

1

3

query node

Q1

Q2

Q3

Q4

Q5

hash
1

3

1

2

2

count
A: 1, B: 1

A: 2, B: 1

A: 1, B: 1

A: 2, B: 0

A: 2, B: 0

A: 8, B: 3

Fig. 2: Illustration of the place recognition algorithm. Two nodes with 5 descriptors each are added by storing the hash
value occurences. The place recognition is then queried with a node. At the hash values of the query nodes’s descriptors,
the occurences are summed up for each known node, yielding node A to be the most similar with 8 occurences.

a minimal Hamming distance. Outlier correspondences are
then eliminated in a Random Sample Consensus (RANSAC,
[21]) scheme, where transformations are estimated using 3D
positions of three feature correspondeces. Here, a simple
Singular Value Decomposition (SVD)-based transformation
as in [2] is performed.

Transformations are checked for feasibility by two heuris-
tics. First, the amount of RANSAC correspondences needs to
exceed a certain number (in our experiments this is fixed to
75, which has proven to eliminate most inaccurate transfor-
mations). Then, the translational and rotational components
of the transformation must not be too high, assuming an
accurate transformation can only be estimated for limited
viewpoint changes. Here, in our experiments, the maximum
translation length is fixed to 1m, the maximum degree of
rotation to 45◦.

4) Graph Optimization: The odometry error accumulates
with time. Edges that were estimated based on the visual
information of nodes provide a way to correct this error by
using graph optimization. In this work, we use the General
Graph Optimization framework (g2o, [7]). g2o utilizes an
efficient sparse least squares optimization, graph maps can
therefore easily be optimized everytime a new node is added
to the graph.

An important parameter to the graph optimization is the
edge uncertainty, i.e. covariance matrix. As previously stated,
local edges established by the wheel odometry are assigned
a low uncertainty, while visual edges are assigned a higher
uncertainty. To achieve some tolerance to low accuracy in
visual links and possible wrong loop closures, we go one step
further and dynamically adjust the uncertainty of visual edges
based on the edge error. The edge uncertainty is increased by
an amount relative to the edge error, if the edge error exceeds
a pre-defined value (in our experiments 0.3m), and decreased
up to a minimum uncertainty for visual edges otherwise. If
the uncertainty then exceeds a maximum uncertainty, the
edge is deleted. This, generally, has led to an improved
accuracy and robustness of the SLAM algorithm.

III. EXPERIMENTAL RESULTS

In this section, experimental results for the SLAM as
well as the localization and path planning algorithms will be
shown. Experiments were performed on the PeopleBot from

MobileRobots4, which is equipped with wheel-odometry and
a SICK LMS-200 LRF. A Microsoft Kinect camera facing
to the front and two Asus Xtion Pro cameras facing to the
side and back were mounted to the robot platform, of which
in this work only the front facing Kinect will be used.

The experimental focus was on determining the accuracy
of the SLAM solution, while experiments on localization
and path planning were performed on the real robot. The
accuracy is measured using the LRF-based mapping and
localization solutions that come with the Robot Operating
System (ROS) framework, gmapping5 and amcl6. We assume
that the LRF, due to its accuracy and range, is able to
generate maps and provide localization accurate enough to
be used as ground truth.

We have further tried to compare our approach to the most
similar VSLAM solution, the recently published mapping
system of Dryanovski et al. [4], which uses a fast visual
odometry for real-time performance. Yet, due to failures of
the visual odometry in regions of few texture and failure to
find loop closures, a sensible comparison was not possible.
Similarly, it was not possible to generate a map using
gmapping and 2D scans extracted from the Kinect depth data.

A. Test Sequences

The test sequences used for this evaluation were recorded
in the computer science building of the University of Lübeck.
Here, the environment captures many of the properties that
we expect in our target applications. It exhibits different
lighting conditions, from direct sunlight to artificial light.
The hallway of the building is repetitive and provides few
visual features. It further requires to close large loops.

Three test sequences were evaluated, as shown in Fig. 3.
The first sequence encompasses a large loop through the
hallway. In the second sequence, laboratories and conference
rooms were repeatedly traversed in varying directions. The
third sequence provides a mixture of the other two. For a
comparison with the results presented below, Fig. 4 shows
the raw wheel odometry for each test sequence. With the
publication of this paper, the datasets will be made publicly

4http://www.mobilerobots.com/ResearchRobots/
PeopleBot.aspx

5http://www.ros.org/wiki/gmapping
6http://www.ros.org/wiki/amcl

iti4_1 (230m, 466s)

iti4_2 (302m, 708s)

iti4_3 (331m, 693s)

Fig. 3: Plot of the three test sequence paths hand-fitted to a
floorplan of the test building. Path lengths and duration are
shown in brackets.

available at our website7, where we will further provide
sample images and videos from the datasets.

B. SLAM

Fig. 5 shows a boxplot of the mean root mean squared
error (RMSE) of 80 test runs for each of the three test
sequences. In all test sequences, the RMSE stays well below
1m or 0.3% of the path length. Here, the localization
accuracy is primarily dependant on the accuracy of the wheel
odometry in the larger loops (note that the accuracy in the
second sequence is higher, as only part of the hallway is
traversed). Considering the limited accuracy and range of
the Kinect camera, we feel that the RMSE cannot be signif-
icantly improved without extensive post-processing, e.g. 3D
registration of the depth images.

As for the industrial application, repeatability and robust-
ness of the SLAM algorithm are important. Here, the RMSE
results are in a range of close to 20cm for all test sequences
with no outliers, showing that loop closures are robustly
detected.

C. Localization and Path Planning

The localization and path planning algorithms have been
examined in combination. First, occupancy grid maps were
extracted from the graph map. Results for the three test
sequences can be seen in Fig. 6. While the extracted occu-
pancy grids are largely consistent, the second test sequence
(center image) shows one major problem of our approach
(or VSLAM in general for that matter). In the second test

7http://www.iti.uni-luebeck.de/navigation.html

iti4_1 iti4_2 iti4_3

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

R
M

S
 e

rr
or

 in
 m

Fig. 5: Boxplot of the RMS SLAM error for all three
datasets.

sequence, the hallway was travelled in both directions. This
results in blurred walls in the occupancy grid, as the small
field of view as well as the dependance of image features on
the viewpoint prevent the creation of links between the two
directions.

The experiments where therefore performed on a map of
the first test sequence. Fig. 7 shows the planned path in
dashed blue and the graph localization position in solid red.
In the first part, the lower corner of the map was to be passed.
In the second part, the robot had to follow part of the hallway
with two obstacles (green circles) that were not present at the
creation of the map. In both cases, the initial position was
found by the localization algorithm and the goal position
could be successfully reached. The localization was accurate
enough to closely follow the planned path and obstacles
could be avoided by incorporating the Kinect depth data.
Note that the experiments were conducted several weeks
after the test sequences were recorded, indicating that the
localization algorithm is robust to slight illumination changes
and changes in the environment.

D. Runtime and Memory

The realtime applicability of our approach was one of
the requirements with the target application in mind. Here,
SLAM is the most critical part of the navigation system.
The SLAM runtime was measured whenever a new node
was added to the graph map and for each module sep-
arately, including communication overhead. Measurements
were performed on a desktop computer with an Intel Core
i7 processor clocked at 3.4GHz. In Fig. 8, results are shown
with the example of the second and longest test sequence.
Feature extraction and link estimation depend on the number
of features that are extracted and the number of links to
be established, with mean and maximum runtimes of 22ms
and 42ms for feature extraction and 38ms and 174ms for
link estimation respectively. Here, the highest runtime of
the link estimation corresponds to the large loop closure
towards the end of the test sequence. The runtime of the
place recognition algorithms, too, is rather dependant on the

70

60

50

40

30

20

10

0

-40 -30 -20 -10 0 10 20 30 40

30

20

10

0

-10

-10 0 10 20 30 40 50-40 -30 -20 -10 0 10 20 30 40

60

50

40

30

20

10

0

x in m

y
in

 m

Fig. 4: Raw wheel odometry (red) for the three test sequences. Ground truth data is shown in dashed black.

Fig. 6: Extracted occupancy grid maps for the three test sequences.

number of features than on the number of nodes, with a
mean and max runtime of 10ms and 40ms. The remaining
graph optimization runtime grows as the number of nodes
(of which a total of 1012 are constructed) in the graph map
grows, to a maximum of 120ms.

Considering that, in this test sequence, in the mean a
new node was created only every 679ms, the maximum
total SLAM update time of 310ms more than satisfies the
requirements for realtime performance. The only part of the
algorithm that significantly grows with the size of the map is
the graph optimization. This may for example be solved by
optimizing the graph asynchronously. Similar results hold
for the localization algorithm, which matches the SLAM
performance with the exclusion of the graph optimization
time. The time taken for the laser scan extraction for the
path planning application, on the other hand, is negligible.

In contrast to runtime, memory consumption may be a
problem for larger environments. In all test sequences, the
SLAM and localization algorithms need 2 to 3GB of RAM
to hold the graph map. When stored, graph maps required up
to 1.3GB. This is mainly due to the depth image, which we
currently store for each node to build the occupancy grid map
and which we want to use in the future to perform an offline
post-processing to improve the accuracy. To enable mapping
of larger environments, therefore, a submapping approach

will need to be implemented.

IV. CONCLUSION

In this paper, we have presented a complete visual graph-
based navigation approach, including graph-based visual
simultaneous localization and mapping (VSLAM), graph-
based localization, and graph-based path planning. The solu-
tions presented in this paper were specifically developed for
the application of industrial mobile robots, e.g. automated
logistics and cleaning, where the scalability and low cost
of camera-based approaches are important factors. Novel
solutions were introduced for place recognition and loop
closing, localization, and path planning.

Both VSLAM and localization benefit from the incorpora-
tion of wheel odometry measurements for local positioning,
while visual cues are used to correct large-scale errors.
In case of VSLAM, this leads to a robust and accurate
mapping system. In case of localization, challenges as initial
localization and the “kidnapped robot” problem are seam-
lessly solved. The path planning algorithm integrates into
2D occupancy grid-based approaches, enabling us to use the
tried and tested global and local planning algorithms of the
Robotic Operating System (ROS) framework.

Results were shown for three large scale test sequences
with path length of 230 to 330 m. The test sequences were
recorded in an office environment and exhibit challenges

obstacles

Fig. 7: Path planning and localization experiments on a map
built from the first test sequence.

that we expect to face in the target applications: repetitve
environment, different lighting conditions, regions with few
texture, and large loops. Our algorithms were evaluated
against a LRF-based localization solution, which we assume
to be more accurate due to the higher accuracy and range
of the LRF. Here, the graph-based VSLAM solution exhibits
maximum errors of less than 1.0m or less than 0.3% of
the path length. At the same time, the proposed algorithms
require only a fraction of the available time for localization
and mapping, enabling the real-time application. Further, the
localization and path planning algorithms were tested on our
robot, showing that the localization is accurate enough to
closely follow the planned path and avoid obstacles.

Of course, this is only a first step in the direction of graph-
based navigation. While the presented approaches provide a
fully functional navigation system, the graph-based frame-
work allows for improvements in various fields. Besides
more thorough experimental evaluation of the localization
and path planning algorithms, our next effort will be directed
towards the most apparent problems that were obtained from
the experiments. We will therefore investigate the use of
multiple 3D cameras to increase the field of view and include
additional sensors, e.g. inertial measurement units (IMU).
The automatic extrinsic calibration and sensor fusion of
these sensors will be handled inside the graph system. A
submapping approach will be further developed to maintain
the realtime capability and restrict memory consumption in
larger environments. We are further aiming to fuse the SLAM
and localization algorithms in a lifelong mapping approach,
as suggested in [22]. Finally, we will investigate specific

200 300 4001000
0

50

100

150

200

250

time in s

ru
nt

im
e

in
 m

s

500 600

300 link estimation
graph optimization
place recognition
feature extraction

Fig. 8: SLAM update time by module for the second test
sequence (accumulated values). From bottom to top: feature
extraction, place recognition, graph optimization, and link
estimation.

graph-based path planning and obstacle avoidance solutions.

REFERENCES

[1] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in Proc. of the IEEE Int. Conf. on
Computer Vision (ICCV), 2011, pp. 2548–2555.

[2] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard, “An evaluation of the RGB-D SLAM system,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[3] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige,
“Double window optimisation for constant time visual SLAM,” in
Proc. of the IEEE Int. Conf. on Computer Vision (ICCV), 2011, pp.
2352–2359.

[4] I. Dryanovski, R. G. Valenti, and J. Xiao, “Fast visual odometry and
mapping from rgb-d data,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2013, to appear.

[5] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2d and 3d map-
ping,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2010, pp. 2432–2437.

[6] G. Grisetti, C. Stachniss, and W. Burgard, “Nonlinear constraint
network optimization for efficient map learning,” IEEE Transactions
on Intelligent Transportation Systems, vol. 10, no. 3, pp. 428–439,
2009.

[7] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o : A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2011, pp. 3607–
3613.

[8] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
SLAM with Rao-Blackwellized particle filters by adaptive proposals
and selective resampling,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2005, pp. 34–46.

[9] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo
localization for mobile robots,” Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2001.

[10] J. Hartmann, D. Forouher, M. Litza, J. H. Klüssendorff, and E. Maehle,
“Real-time visual SLAM using FastSLAM and the Microsoft Kinect
camera,” in Proc. of the 7th German Conf. on Robotics (ROBOTIK
2012), Munich, 2012, pp. 458–463.

[11] J. Hartmann, W. Stechele, and E. Maehle, “Self-adaptation for mobile
robot algorithms using organic computing principles,” in Architecture
of Computing Systems (ARCS), Prague, 2012, pp. 232–243.

[12] D. Lowe, “Object recognition from local scale-invariant features,” in
Proc. of the IEEE Int. Conf. on Computer Vision (ICCV), 1999, pp.
1150–1157.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up
robust features,” Computer Vision and Image Understanding (CVIU),
vol. 110, no. 3, pp. 346–359, 2008.

[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary robust
independent elementary features,” in Proc. of the European Conf. on
Computer Vision (ECCV), 2010, pp. 778–792.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” in Proc. of the IEEE Int. Conf.
on Computer Vision (ICCV), 2011, pp. 2564–2571.

[16] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on Statistical
Learning in Computer Vision (ECCV), 2004, pp. 1–22.

[17] J. Sivic and A. Zisserman, “Self-adaptation for mobile robot algo-
rithms using organic computing principles,” in Proc. of the IEEE Int.
Conf. on Computer Vision (ICCV), 2003, pp. 1470–1477.

[18] D. Nistér and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2006, pp. 2161–2168.

[19] H. Strasdat, J. Montiel, and A. J. Davison, “Scale drift-aware large
scale monocular SLAM,” in Robotics: Science and Systems (RSS),
2010.

[20] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. of the Int. Conf. on Very Large
Data Bases (VLDB), 1999, pp. 518–529.

[21] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[22] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation (IROS), 2009, pp.

1156–1163.

