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Abstract—This paper presents an approach to perform com-
prehensive in situ environmental measurements in shallow wa-
terbodies with the help of a swarm of small and flexible au-
tonomous underwater vehicles (AUVs). To perform simultaneous
measurements at different locations, the mission is automatically
subdivided amongst the robots using a rule-based robot control
architecture and special heuristics depending on internal robot
states. This allows a significantly larger coverage of CTD mea-
surements reducing costs on the one hand and minimizing the
overall mission times on the other hand.

I. INTRODUCTION

Due to constantly changing environmental conditions, phys-
ical and biological parameters of shallow waterbodies are
affected in many aspects. Long-term effects can only be
clarified by comprehensive series of measurements, which
are realized by manual sample collections with the help of
boats and divers. This is very cost-intensive and involves a
large number of risks for researchers. Hence, autonomous
underwater vehicles (AUVs) can help to provide the needed
data and relieve the strain of various people in charge. A large
number of robotic systems is available today, but most robots
are too specialized or expensive in construction for commercial
usage [1]. Usually, the AUVs operate as single vehicles like
the most common REMUS AUV [2] or the Slocum Glider
[3] for large scale ocean investigations. However, for the
environmental monitoring of shallow waterbodies, the use of a
swarm of small and inexpensive AUVs can serve to gather data
in a simpler way. The OceanLab Data Driver [4] is such an
approach to collect environmental data in a swarm of robots,
but the system is still limited for submerged traces. This paper
presents an approach to cooperative swarm behavior for more
cost-effective in situ measurements at various positions at the
same time. The described methods are then tested on our
swarm AUVs MONSUN.

II. SWARM BEHAVIOUR

In order to realize an effective and efficient behavior of
an AUV swarm some kind of swarm intelligence is needed.
Therefore the swarm members need a communication channel
for the purpose of forming a mutual knowledge base. For
the communication a centralized approach was chosen to
significantly reduce the needed amount of messages. Hence,
this method is not only limited to high band-width WiFi
communication but may as well be achievable by utilizing

an acoustic channel. Acoustic communication provides far
lower transfer rates but can be used by the AUVs while being
submerged. The testet acoustic modems achieve a data rate
of up to 13.9 kbit/s and operate in a frequency band from
18 to 34 kHz which enables an underwater communication to
coordinate the swarm on the one hand and an online data
transmission to the surface on the other hand. The swarm
coordination and online data transmissions are explored in
future work.

A. Communication

For a centralised communication, in the beginning
one swarm member is designated as coordinator and is
commissioned with the gathering of all needed data to assign
tasks. To share information in a network of AUVs, the Echo
algorithm of Chang [5] is utilized. The Echo algorithm can
be applied to any connected topology of swarm members.

Independent of the used technology, every communication
channel has its physical limitations. Especially signal range
is a constraint of high interest for robot swarms. Dependent
on robot positions and the used technology not all swarm
members might be able to communicate with each other.
Figure 1 illustrates some examples of topologies. In the upper
left corner, all members are able to communicate directly
with each other. The formation in the upper right shows
robots that are following their predecessor. If the inter-robot
distance is too large or in case of e.g. acoustic communication
robot two shadows out the signal propagation coming from
robot one or robot three, only a transitive communication is
possible. In the lower example, a scenario for large swarms
of AUVs is shown. Instead of operating in a single area,
it might be beneficial to form groups to survey different
territories. Here, two groups of AUVs are organized in
diamond shaped formations. Within each formation all robots
can communicate using direct routes. However, both groups
can only exchange information using a relay.

In such topologies of robots with unique IDs a coordinator
is then designated. The coordinator starts by flooding the
network with explorer messages. The explorer messages
are used to distribute information to adjacent AUVs in the
topology. The explorer message is then relayed until the



Fig. 1. Three examples of possible swarm topologies. Up left all members are
interconnected, while in the upper right the distance only allows a transitive
communication. The lower example depicts two interconnected groups that
can only communicate via a relay.

external vertices of the topology are reached. Then the
eponymous echo messages are used to send robot state
information as a vector back to the coordinator. Each AUV
provides its own data. The robot state can include data like
current GPS coordinates ((x, y), battery level (charge) and
the equipped payload of sensors (N ) for each AUV. Upon
receiving the completed robot state vector the coordinator can
allocate tasks to each member of the swarm based on this
mutual knowledge base.

Another interesting aspect of swarm robotics is fault toler-
ance. The echo algorithm can as well be used as a selection
algorithm to designate a new coordinator in cases of outage.
The AUV that detects the outage of the coordinator, initiates
the Echo algorithm by sending its unique ID. AUVs are
aware that they lost the selection process once they receive
an explorer message with a higher priority ID than their own.
Alternatively the explorer messages are ignored when having
a lower priority. The initiator has won the selection when
receiving echo messages from all adjacent robots.

B. Mission Allocation

The allocation-rules of tasks described hereafter are for a
specific mission type. For a given set of GPS coordinates, in
situ measurements are to be conducted. For a single AUV this
results in a travelling salesman problem for finding the optimal
sequence of waypoints. When using a swarm of AUVs an

additional constraint can be introduced. Mission time should
be minimized while balancing the battery level of each AUV.
The different tasks of the mission need to be allocated to
the swarm members in a way that the mission is solved
most efficiently. By additionally balancing the battery levels
instead of just reducing total mission time, it is guaranteed
that for further missions a maximum number of AUVs is
still available. Otherwise, it might be possible that the battery
level of a few AUVs is reduced drastically as they might
be always the optimal choice for far away waypoints in
hindsight to the time constraint. This problem is very similar to
the knapsack problem. There is however no polynomial-time
algorithm to solve this problem and it should be considered
that robot processing units are often limited in computational
power. Hence, a heuristic is used to get feasible solutions with
minimal computational complexity. The heuristic function, as
seen in equation 1, is calculated for all given GPS coordinates
of a set of waypoints where measurements are to be taken
and for all AUVs separately. The AUV with the lowest value
of the function HMONSUN for a measurement point wins
the selection. For a specific point the sensor payload, the
distance to the AUV and the battery level are considered.
The payload N is a boolean indicator for the coordinator
if the AUV is able to take all required measurements. This
way AUVs without the needed equipment are not considered
and can fulfill tasks at other waypoints. The distance dist is
multiplied with the inverse of the battery level charge ∈ [0, 1].
Fully charged AUVs are therefore assigned further distanced
waypoints, balancing out the battery level of the swarm.

HMONSUN =

{
undefined : N = False

dist · (1− charge) : else
(1)

An allocation of AUVs simply based on this heuristic is
far from optimal, as this is a greedy approach that does not
consider how the waypoints are positioned relative to one
another. As an example an AUV is placed right between two
measurement points and has the best heuristic values for these
two but will then have to travel the maximum distance between
these two points. A second AUV has an assigned target very
close to one of these two points and should cover both to
save mission time. Therefore, it is meaningful to subdivide
the waypoints in clusters with minimal inter-point distances.
By assigning the clusters to the AUVs instead of single points
the traces can be further optimized. A classification of the
measurement points can be achieved with pattern recognition
and machine learning methods. A Principal Component Anal-
ysis (PCA) [6] without the final transformation of the data set
already provides profound insights.

mX =
1

N

N∑
i,j=1

(xi, xj) (2)

Xme = X −mX (3)

The PCA is a method to emphasize variety and highlight
patterns in a data set X . In a first step the arithmetic mean mx



Fig. 2. An exemplary data set of seven points is given where measurements of environmental parameters are to be taken. On the left principal component
one is pointing in the direction of the largest variance. Principal component two is orthogonal to the first and the ellipse is indicating the underlying statistical
distribution. On the right the result of the projection of the waypoints onto the principal components can be seen. The set of points is subdivided into four
clusters. A MONSUN is shown to be allocated to the lower left cluster.

for the features is calculated and the data set is then mean-
freed, as shown in equation 2 and 3.

Cov(X,X) = E[(X − E(X))2] = V ar(X) (4)

Next the data set is considered to be a statistical distri-
bution with X being a real and integrable random variable.
Therefore, the first moments E(X) and E(XX) exist and
by these conditions the covariance matrix in equation 4 can
be computed. The diagonal of the covariance matrix displays
the variances in x and respectively y direction while the off-
diagonal represents correlations. The goal is to find vectors
with the biggest variance freed of any correlation. Therefore,
a projection

#»v TCOV (X,X) #»v (5)

needs to be found where the projected variances are as
large as possible. An easy solution is solving the eigenvalue
problem for the data set. By definition of the Rayleigh
quotient, the maximum of such a projection is obtained by
setting #»v to the largest eigen vector. Hence the biggest eigen
vector is always pointing in the direction of the highest
variance. Thus, the second largest eigen vector is orthogonal
to the first. The direction of the highest variance also means
that data points are furthest away from each other. Figure 2
depicts a set of points of interests on the left. The surrounding
ellipse indicates the underlying statistical distribution for the
PCA. The principal components are then pointing in the
direction of the highest variances.

Dividing the data set along the largest variance is beneficial
for task allocation. Therefore, the second moment is providing

information about the relative positioning of points. Points in
the respective subsets are much closer to each other than to
the other subset. The smaller eigen vector can then be used
as a classification line. Analogue to a perceptron classification
rule all data points are projected onto the smallest eigen vector
as shown in equation 6, yielding a binary classifier.

y = w · xT − θ = (w0 · x1 +w1 · x2 + ...+wn · xn)− θ (6)

For y > 1 the data point will be assigned class 1 and
accordingly for y ≤ 0 the class -1. θ refers to the displacement
from the origin and is equal to zero, because the mean was
subtracted in the first step and the data set is already centered
around the origin. Figure 2 shows the classification line along
the smallest variance for an exemplary data set on the right.
Projecting the points onto the boundary will therefore yield
a subdivision into two point clusters that can be assigned to
different AUVs. When the mean position of a sub-set is used
for the heuristic the computational cost is reduced to two per
robot.

Two clusters can be easily allocated to two AUVs. For a
third AUV the cluster with the most data points will be divided
again using the same method, yielding three clusters. As
shown in Figure 2 the left subset with four waypoints is split
up and a MONSUN is assigned to the lower two waypoints.
By recursively applying the PCA approach to each cluster, a
number of clusters equal to the total number of waypoints can
be generated. Within each cluster the AUV needs to minimize
the traveled distance. This optimization problem is equal to the
travelling salesman problem but for small enough sub sets still



Fig. 3. The AUV MONSUN in its base version features small size and high
agility. Four brushless motors in the fins for vertical and two motors for
horizontal propulsion allow MONSUN to control its pose very accurately.

feasible. Even greedy strategies can provide satisfying results
on very small sub sets.

III. THE MONSUN UNDERWATER ROBOT

For all tests and evaluation of the beforehand described
methods, MONSUN AUVs developed by the University of
Luebeck are used. The MONSUN AUV is built in a modular
forward-looking way to be used in a large number of possible
tasks in the field of environmental monitoring. With a
comparably small size of 60 cm in length and a diameter of
10 cm, it features high agility and manoeuvrability due to
six brushless motors [7]. This base version of MONSUN is
displayed in Figure 3.

The ROS-based software architecture [8] for MONSUN
is structured in three layers to strictly separate the control
system, tasks and mission planning from each other. The
modular design of ROS and this chosen architecture allows
for easy adaption of the software for a specific task. Different
robot behaviors are easily implemented on the one hand and
on the other hand the publisher/subscriber structure allows for
simply implementing higher levels of cooperation between
the robots when using communication mediums like WiFi.
For other mediums like acoustic communication there is only
need for suitable middle-ware.

Furthermore, the robot contains an expansion set with
additional sensors like a water sample extraction module or
a professional CTD sensor to adapt to various deployment
scenarios [9]. Currently there are five robots and first long-term
measurements in shallow inland waterbodies and the Baltic
Sea to improve the swarm behaviour have been performed.
Two AUVs have taken part in project Clockwork Ocean [10]
and provided data on submesoscale eddies in the Baltic Sea.
In Figure 4, two modified MONSUN AUVs are displayed.
An extra metal frame above the robot allows for easier
deployment and recovery from ship and the antenna increases
WiFi communication range at surface level. The robots use
Wifi to exchange mission critical data like GPS positions,
battery level and used payload. The payload is mounted under
the AUVs. For the tests a CTD48 sensor [11] is used to provide

basic oceanographic or limnological parameters like depth,
temperature and conductivity.

Fig. 4. The here shown MONSUN AUVs are modified for use in the baltic
sea. The extra metal frame allows for easier deployment and recovery and the
antenna increases communication range at surface level. As payload a CTD
sensor and an acoustic modem are mounted below the robots. The MONSUN
AUVs exchange GPS positions, battery level, and payload of sensors via WiFi.

IV. EVALUATION

The evaluation of the approach will be conducted using two
MONSUN AUVs. For a specific mission scenario a local wa-
terbody close to the University of Lübeck was chosen. In total
four in situ measurements of environmental parameters have
to be taken at different GPS coordinates. When a waypoint
is reached the AUV is supposed to collect data for a time
frame of 30 s at the position before navigating to the next
point of interest. In Figure 5 the area with the four targets is
displayed. In a first step a single MONSUN is given the task
to survey the four target points as a reference value for the
swarm based approach. The ideal round trip distance from the
starting point is approximately 55m. With a chosen average
velocity of 0.3 m

s or 0.58 knots and a measurement time of
30 s at each point the total mission time is as follows:

Tmission =
55m

0.3 m
s

+ 4 · 30 s ≈ 303 s (7)

In the next step, a second AUV is deployed to assist the
first one. After the designation of a coordinator AUV, the two
swarm members exchange data via WiFi connection at the
surface. Based on the collected information the coordinator
assigns each swarm member a set of two points of interest.
The traces of the AUVs are depicted in the colors blue and
green. The AUV taking the green trace is assigned point one



and two and is equipped with a Xsens MTi-G-700 IMU as
well as an external GPS antenna for navigation. The positional
accuracy at the target points is within range of two metres.
The total track length for this MONSUN is now reduced to a
length of 31.4m. The second AUV surveying the points three
and four is equipped with an older version of the IMU and an
internal GPS antenna. While moving, the GPS antenna is thus
often covered with a layer of over washing water reducing the
precision of the navigation greatly. The positional accuracy
at the targets is still within a radius of 5m. The traversed
distance measures at 34.6m. For the same measurement time
of 30 s the total time of the mission is 173 s when using two
AUVs. In comparison to the time of 303 s for a single robot,
two robots were able to complete the same task in 57% of
the time.

Fig. 5. Specific test scenario with four points of interest in a local waterbody
near the University of Lübeck. The points are subdivided into two subsets
and allocated to the AUVs.

With either higher measurement times at the points of
interest or greater inter point distances this margin increases
even more. The MONSUN AUVs are not only able to complete
given missions considerably faster, but the use of multiple
robots offers a degree of redundancy. Even when members
of the swarm experience temporary suspension of service,
the mission may still be completed by the other swarm
members. In case of coordinator failures, the other members
can designate a new leader independently using the selection
echo algorithm.

For higher measurement times a plot of measurements is
given in Figure 6. Upon arriving at a waypoint the AUV
slowly descends to a depth of 4m on the spot. After five
minutes of measurement, MONSUN surfaces quickly and
heads to the next waypoint. The data is collected with the
CTD48 sensor providing high precision measurements of
basic oceanographic or limnological parameters.

In the first plot the descend of the AUV can be seen in the
gradual change of the depth value. Furthermore temperature
and conductivity values are plotted for each depth level over
the course of the five minutes. There is an obvious correla-
tion between the three plots. But there are also indications
for thermoclines in the temperature plot. At the depth of
around one metre the temperature value hits a plateau before
falling almost half a degree of Celsius at the depth of two
metres. From these basic parameters additional features can
be derived. Sigma-T for example is a quantity used mostly in
oceanography to measure the density of seawater at a specific
temperature. Another important parameter is the the speed of
sound underwater. This variable is needed for accurate acoustic
submarine-measurements.

Fig. 6. After reaching the point of interest the MONSUN AUV starts slowly
descending to a depth of 4m as can be seen in the first plot. After 5min
of measuring parameters the AUV quickly surfaces and navigates to the next
waypoint. The plots of temperature and conductivity show a correlation to the
depth. The temperature curve furthermore indicates a possible thermocline at
the the depth of around one metre. At two metres a sharp drop in temperature
of around 0.5 ◦C can be observed.

V. CONCLUSION

In this paper, a swarm-oriented approach for in situ
underwater measurements was described. Due to the low
amount of needed messages, the presented Echo algorithm is
applicable for surface-based and underwater communication
alike and can also be used as a selection algorithm to provide
system recovery options. The heuristic in combination with a
PCA-based binary classifier can be run with low computational
power and delivers efficient waypoint allocation for the swarm



members. The approach is highly scalable to the number of
swarm members without increasing problem complexity. In
the test scenario in Figure 5, the path depicted in blue was
34.6m long and the other 31.4m. For a measurement time of
30 s at the waypoints, the mission was completed after 173 s
with two AUVs. A single MONSUN had to travel 55.2m and
completed the mission after 303.3 s; an increase in mission
time of 57 %. With higher measurement times as seen in
Figure 6, this margin increases even more. The CTD48 sensor
yields high precision measurements for oceanographic or
limnological purposes. It is possible to detect thermoclines
and compute water density along the complete water column.
This way two water parcels can easily be compared by e.g.
oceanographers.

Besides being able to complete missions faster, the use of
multiple robots provides redundancy. In the case of failure
of one AUV, the mission will not fail and can be completed
by the other swarm members. For future work possibilities
of the use of acoustic communication are explored. Acoustic
distance measurements could aid in underwater navigation and
the possibility of live transmission of measurement features
can help scientists survey areas. The mission can then be
adjusted accordingly to concentrate specifically on points of
interests.
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