
Sonar-based FastSLAM in an Underwater Environment Using Walls as
Features

Dariush Forouher, Jan Hartmann, Marek Litza, Erik Maehle

Initial submission. Copyright: IEEE.
Abstract— A lot of research has been done in the area

of Simultaneous Localization and Mapping (SLAM). It is
particularly challenging in underwater environments where
many of the self-localization methods used at land no longer
work. This paper presents a method to use a rotating scanning
sonar as the sole sensor to perform SLAM in harbors or natural
waterways. We present a feature extraction process which is
capable of extracting walls of arbitrary shape. These extracted
wall features are then used to perform SLAM using the well-
known FastSLAM algorithm. We show that SLAM is possible
given this type of sensor and using our feature extraction
process. The algorithm was validated on an open water test site
and will be shown to provide localization accuracy generally
within the error of the GPS ground truth.

I. INTRODUCTION

Underwater vehicles are used to move in marine environ-
ments for a while now. As many marine environments are
hostile to humans, Remotely Operated Vehicles (ROVs) have
been used successfully for many years to perform underwater
tasks. They are, however, limited by the need of a human
operator and usually a tether for communication. In recent
years, therefore, interest in developing Autonomous Under-
water Vehicles (AUVs) has increased [1], [2]. AUVs are
promising because of the potential cost savings in omitting
a human operator and in performing tasks too difficult or
dangerous for people to do. Developing an AUV, however,
is a complex task. One of the more important problems
to be solved is localization. A robust method to achieve
localization underwater is to deploy artificial landmarks
with known positions, e.g. active sonar beacons or highly
reflective sonar markers. The AUV can estimate its position
relative to those beacons. There are situations, however,
where setting up artificial landmarks is undesirable. An
example is deploying an AUV in an previously unknown
environment. Localizing a robot in such a scenario, without
any artificial landmarks, is called self-localization. In such
a scenario one has to rely on natural landmarks to achieve
localization. Doing this in an unknown environment, having
no map to rely on, is called Simultaneous Localization
and Mapping (SLAM). SLAM as a theoretical problem is
considered to be solved for a while now [3], and on land it
has been shown to work in many scenarios. Implementing
it in an underwater environment proves to be more difficult,
due to limiting choices in sensors. The main motivation for
us to develop SLAM on an AUV was to successfully perform
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Fig. 1. A 360◦ sonar measurement with a range of 50 meters, taken at
the test site. The robot is in the center. The white lines indicate the true
location of the walls.

in the Student Autonomous Underwater Vehicle Challenge -
Europe (SAUC-E) underwater robotics competition [4]. In
the competition an AUV has to perform tasks autonomously
in a confined water basin. Localization is essential to move
between the different tasks.

In this paper we describe how we implemented SLAM
with an underwater vehicle with the goal to perform in
environments similar to natural water ways, basins or harbor
areas. Those areas often contain walls with sufficiently
complex structures to enable localization. Our goal was to
localize an AUV using a mechanically rotating scanning
sonar, which is cheap compared to more sophisticated sonar
devices. Furthermore we did not use any additional sensors,
like Inertial Navigation Systems (INS) or Doppler Velocity
Logs (DVL) for odometry, to avoid the cost of those devices.
Our setup, with one of the least expensive sonar heads
available, is currently likely one of the cheapest possible
setups to perform SLAM in an underwater environment.

The sensor used is a wide beam imaging sonar1 with a
range of 50 meters. In our setup it worked with a resolution
of 20 cm and rotated in 6 degree steps around its axis.
Acquiring an 360 degree image took about 8 seconds using
these parameters. Fig. 1 shows a typical sonar image. The
most prominent features visible are usually the walls and

1Imagenex 852 Ultra-Miniature Scanning Sonar



reflections of the ground (compare Fig. 2 on p. 3).
The main challenge in solving the SLAM problem under-

water lies with the feature extraction, as sonar images are
noisy and significant post processing is required to extract
wall features from them. Additionally, the limited update
rate of the sonar constrains the maximum possible angular
and linear speed of the robot. Any movement during sonar
recordings will induce distortions. While stopping the vehicle
during recordings might mitigate this, doing so is generally
undesirable. We developed an algorithm that robustly extracts
walls from raw sonar images (Fig. 1) and uses them for
performing SLAM. The walls can be of arbitrary shape
and are not restricted to straight lines or sharp corners. We
perform localization solely using these wall features.

The remainder of this paper is structured as follows:
First we describe related work (Section II), followed by
an introduction into SLAM (Section III). Then we outline
our feature extraction process (Section IV) and finish with
experimental results (Section V) and the conclusion (Section
VI).

II. RELATED WORK

Ribas et al. describe an approach to SLAM in [2] using
a scanning sonar and an AUV. They extracted line features
from sonar images using the Hough transform and used them
as landmarks for localization. Distortions due to movement
of the vehicle were corrected by estimating the movement of
the robot with help of a DVL and correcting the sonar images
accordingly. For cost reasons we neither used a DVL nor an
INS, thus prohibiting a similar correction step. Further, our
approach is more generic as it is not constrained to straight
line features.

Williams [5] performed SLAM using artificial landmarks,
which provide easily identifiable sonar returns as the primary
source of localization information. We instead aimed for
achieving localization without any artificial landmarks.

In [6] the authors describe an implementation of Fast-
SLAM using occupancy grids. They mapped underwater
archaeological sites with their SLAM implementation and
used a sonar comparable to our one. The main difference to
our work is that they used a grid-based approach, while we
model the environment as a feature-based map.

III. FASTSLAM

SLAM can formally be defined as estimating the robots
path s1:t and the map θ using all previous observations z1:t
and controls u1:t:

p(s1:t, θ|z1:t, u1:t) (1)

This is called the SLAM posterior. The robot’s path
and the map (a list of landmarks) combined form a high-
dimensional state space. Estimating this high-dimensional
state using only very limited information is a hard problem
[7]. Many algorithms have been developed to estimate the
SLAM posterior, including EKF-SLAM [8] and FastSLAM
[9].

EKF-SLAM simplifies the problem by assuming the pos-
terior to be approximately a Gaussian distribution. It uses one
single Extended Kalman Filter (EKF) to estimate the poste-
rior. While EKF-SLAM has achieved good results in many
situations [8] it scales poorly with the number of landmarks
and is brittle against data association errors [7]. Therefore we
chose FastSLAM over EKF-SLAM for its better scalability
and for its ability to track multiple hypotheses by using a
particle filter.

In FastSLAM the SLAM posterior is factorized into [9]:

p(s1:t, θ|z1:t, u1:t) = p(s1:t|z1:t, u1:t)︸ ︷︷ ︸
path posterior

N∏
n=1

p(θn|s1:t, z1:t, u1:t)︸ ︷︷ ︸
landmark estimators

(2)
This separation decorrelates the position of the landmarks

from each other, and allows each landmark’s position to
be estimated independently. The path posterior is estimated
using a particle filter, with each particle representing one
possible path and one possible map. The position of the
landmarks are estimated using an EKF [8]. Each particle
contains one EKF for each landmark in its map. If one uses
M particles and N landmarks (on average, the number may
vary between particles), the overall computational complex-
ity is O(MN). FastSLAM therefore scales linearly with the
number of landmarks [9].

SLAM is usually represented recursively as a Markov
process [7]. To implement a SLAM algorithm one needs to
define a motion model g, which describes the movement of
the robot between two states and an observation model h,
which describes what observations are to be expected based
on the current state. We modeled the motion as a Gaussian
distribution

st = g(st−1, ut) + ε = st−1 + ε. (3)

ε represents a sample of a Gaussian distribution [8]. Our
motion model is based on the maximum speed the robot
may experience during its run. We therefore derived the
covariance of the Gaussian distribution from that maximum
speed. Refining the motion model by including more sensor
information, like heading from a magnetic compass, is pos-
sible. However, for the purpose of this paper we avoided the
additional process of sensor fusion.

The observations were modeled as points with range and
bearing. The error was modeled as

zt = h(st) + δ. (4)

Again δ represents a sample of a Gaussian distribution.
A single observation is thus a Gaussian distribution centered
around the measured position.

An important subproblem of SLAM is data association,
which is the mapping of observations to landmarks. In this
paper we represent landmarks as points in a 2-D map without
any signature. This makes data association non-trivial. We
use a simple nearest-neighbor approach to data association.



(a) Raw data. (b) Signal-to-noise data (raw data divided by
range-dependent noise).

(c) Identified “candidates”, where a wall might
be. Adjacent points are connected.

(d) The segmented wall after applying the SVM. (e) The segmented wall after applying heuristics. (f) Final grouped observation.

Fig. 2. Sonar recording taken at the Media docks, Lübeck, in polar coordinates. Each column is a sonar echo response, with the nearest responses at
the top. The horizontal axis indicates the progress of time, as the sonar head rotates around its axis. About 2.5 full rotations of the sonar are visible in
this image. Therefore the same wall is seen multiple times. (a) At the beginning the raw sonar data contains range-depending background noise. (b) After
filtering out this noise the signal-to-noise ratio remains. (c) Using a fixed threshold wall candidates are identified. Neighboring points are drawn by a
connected line (d) The classifier removes as many false-positives as possible. (e) Additional heuristics remove more points. (f) The final observation, a
group of points. The horizontal lines depicted in (e) marks the observations into which points are grouped together.

If there exists a landmark within a certain distance of the
observation, the observation is associated with that landmark.
If there is no landmark in the vicinity, a new landmark
is created at the position of the observation. The data
association is not mutually exclusive, i.e. a landmark may be
matched to multiple observations. The rationale behind this
is that neither observations nor landmarks represent single
objects, but are always part of a cloud of points representing a
wall. This data association is conceptually simple and results
in many cases of miss-associations if the particle is badly
placed. This is compensated, however, by the large amount
of particles we deploy (> 1000). The particle filter weeds
out the particles with bad data association in its resampling
step [8].

IV. FEATURE EXTRACTION

Images recorded with a scanning sonar contain lots of
different types of noise. Robustly extracting a particular type
of feature is critical. We decided to use walls as landmarks
as they are the most prominent and easy to extract features
in a sonar image (compare Fig. 2). For localization based on
walls to succeed, the environment needs to contain walls of
sufficient complexity, i.e. there have to be multiple walls
in sight, a corner or at least a wall curved significantly.
This constrains the environments in where the robot may be
deployed to areas similar to harbor areas or small artificial
water basins.

In this context we define a wall as a structure which stands
out in a sonar image by its strong sonar echo and the property
that “behind” a wall the signal-to-noise ratio (SNR) drops
significantly. We have developed a filter chain that exploits
both these properties to extract walls robustly. The filter chain
analyzes scan results one by one and avoids expensive feature

detection algorithms like the Hough Transform [10]. This
makes the filter chain easy to implement and very fast.

A. Filter Chain

Fig. 2 gives an overview of the filter chain. The steps are
now described in more detail:

1) First the SNR is calculated by using previously known
noise-levels (which depend on the specific parame-
ter settings of the sonar head but are environment-
independent).

2) Then “wall candidates” are identified, denoted by xtw.
They are found by going through a scan from far to
near and stopping at the first echo that exceeds a certain
SNR threshold (Fig. 3). This step exploits the fact that
walls usually reflect all sonar energy. Behind a wall
the sonar image will thus appear “dark”. In identifying
a wall, this step has negligible false-negatives, but it
produces a large amount of false-positives, especially
in the face of noise.

3) Thus the next filter step attempts to remove those false-
positives by applying a classifier. We decided to use
a support vector machine (SVM) [11] for this, and
created a list of 9 features to be used by it. The SVM is
trained by a manually classified training set. Currently
this training set must be created for each environment
for sufficient classification performance.

4) Following the SVM classification several heuristics
are applied to remove more false-positives. This is
based on the insight that incorporating spurious (i.e.
erroneous) landmarks have a greater effect on the
SLAM performance than missing a few good ones.

5) Finally adjacent wall points are grouped together as
a combined cloud of points and handed over to the



SLAM algorithm. This grouping simplifies data associ-
ation: As walls are made up of clouds of points, taking
just one point and trying to match it to a landmark
would have been infeasible. Therefore many points are
used to make data association robust.

B. Support Vector Machine

The SVM classifies sonar returns based on nine features
(F1, F2, ..., F9), which have been carefully selected. These
features are:

1) Find the highest peak in the vicinity of the wall
candidate (k = 20 indicates the window size):

xp = argmax
x∈[xt

w−k,wt
w+k]

SNRt(x) (5)

And use the maximum of the signal at that peak as a
feature:

F1 = SNRt(xp) (6)

2) The ratio of the mean signal strength in front vs. behind
of the wall candidate (P being the farthest data point):

F2 =
mean{SNRt(δ)|δ ∈ [1, xtw]}

mean{SNRt(δ)|δ ∈ [xtw + 1, P ]}
(7)

3) The ratio of the signal variance in front vs. behind of
the wall candidate:

F3 =
var{SNRt(δ)|δ ∈ [1, xtw]}

var{SNRt(δ)|δ ∈ [xtw + 1, P ]}
(8)

4) The distance itself:

F4 = xtw (9)

5) The difference in distance between the previous wall
candidate and the current one (providing there is a
previous wall candidate):
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Fig. 3. This plot illustrates how a wall candidate is found. The dashed line
denotes the SNR, while the solid line represents the SNR smoothened with
a Gaussian kernel. A scan line is swept from the right to left and matches
the first point which crosses the SNR threshold (dashed).

Fig. 4. AUV HANSE, which was used for the tests.

F5 = xtw − xt−1w (10)

6) The mean over a window centered around the peak xp
(with kp = 5 again denoting a window size):

F6 = mean{SNRt(xp + δ)|δ ∈ [−kp, kp]} (11)

7) Similarly calculate the variance:

F7 = var{SNRt(xp + δ)|δ ∈ [−kp, kp]} (12)

8) Calculate the mean over a window centered around the
wall candidate (with km = 3 again denoting a window
size):

F8 = mean{SNRt(x
t
w + δ)|δ ∈ [−km, km]} (13)

9) Similarly calculate the variance:

F9 = var{SNRt(x
t
w + δ)|δ ∈ [−km, km]} (14)

C. Heuristics

After the classification, two heuristics are applied to fur-
ther reduce the amount of false-positives. First, very short
wall segments are removed, as they are unlikely in the
environments we encountered. Secondly, walls are generally
continuous, i.e. sudden jumps in a line of wall points are
unlikely. Therefore wall points are removed if they feature
a high variance, i.e. if they have an unusually large distance
to their next wall point neighbors.

V. EVALUATION RESULTS

The implementation was done in Matlab. For FastSLAM
we relied on an existing Matlab implementation by Tim
Bailey2. The map was stored in an kd-tree, for which we used
the implementation by Steven Michael3. While developing

2FastSLAM 1.0 implementation, http://www-personal.acfr.
usyd.edu.au/tbailey

3http://mathworks.com/matlabcentral/fileexchange/
7030
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(a) Estimated robot path (black) vs. ground truth (gray).
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(b) Boxplot of the pose error, average over 10 iterations.

Fig. 5. Test results, 2000 particles were used. (a) The estimated path is painted black, the GPS path is colored gray. The circles visualize landmarks.
The size of the circles indicates the confidence in it. A large landmark was observed often and has a small covariance, whereas a small landmark was
observed only a few times and still has a large covariance. The largest deviation from the ground truth occurred after 600-800 seconds, where an entire
path segment had been badly placed.

the algorithm, we evaluated it on two test sets. Both provided
comparable results, thus we only present the results of one
site in this paper. The only parameter that had to be changed
between the test sets (besides the SVM, which had to be
retrained) was the control model. This was necessary as the
recordings were done with different average speeds.

As the test platform we used the AUV HANSE (Fig. 4),
which was developed by a team of students at the Insti-
tute for Computer Engineering at the University of Lübeck
to participate in the SAUC-E 2009 and 2010 underwater
robotics competitions [4]. HANSE’s frame is made of PVC
pipes, onto which all individual components are attached.
This design provides freedom for modifications. The main
electronics are contained in a water-proof carrying case,
attached to the frame. HANSE has four thrusters for motion
control, one downward looking camera for floor observation,
a stereo camera system, a pressure sensor and the scanning
sonar used in this paper. It also has a microelectromechanical
systems (MEMS) magnetic compass, accelerometers and
gyroscopes, neither of which were used in this paper. The
central processing unit is an off-the-shelf notebook, running
a custom written software framework to perform autonomous
tasks during the competition. HANSE can be remotely mon-
itored and controlled by tether or by using Wifi, when being
near the surface.

The test set was obtained by driving HANSE manually
in the target area4. During the run, sonar recordings and
GPS measurements were taken simultaneously (see Fig. 5(a)
for a map of the area). The speed averaged at about 0.5
km/h. Special care was taken to avoid sudden movements of
the AUV to minimize the distortions on the sonar images.
The whole run took about 25 minutes. The SVM used in
the feature extraction process was trained on a manually
classified subset of 1397 out of 15167 total scans. Fig. 5(a)

4Latitude/longitude: 53.862686, 10.703795

visualizes the results of performing SLAM. Shown is the
recorded GPS path against the estimated path. Fig. 5(b)
shows the pose error plotted over time. Most of the time
the error stayed within 5 meters and only on two occasions
the error did increase significantly. Both were caused by
insufficient extraction of wall features (the average error over
the full run was 7 meters). As seen in Fig. 5(a), the robot
moved south-west (ground truth, gray), while the SLAM
estimation (black) kept estimating the position farther north-
east. The reason for this mislocalization was that in this area
only one straight wall was successfully extracted. That is
enough to estimate the distance to the wall, but not enough
to estimate the position parallel to the wall.

A limitation of the performance is the increased variance
of the pose error. While the median error stayed low for a
high percentage of iterations, sometimes the SLAM algo-
rithm diverged and produced a wrong map.

VI. CONCLUSION AND FUTURE WORK

In this paper we showed that extracting walls from sonar
data is feasible even in natural environments without straight
walls. The algorithm is sufficiently robust to work even in
the face of strong ground noise.

The SLAM algorithm is able to construct a map and
localize the vehicle in it without using any odometry. The
only constraint on the environment is that is has to contain
walls of sufficiently complex shape. No artificial landmarks
are needed. By using feature-based maps the algorithm
stays computationally feasible. These results were validated
by realistic test runs in open-water basins. The average
localization error compared with GPS was about 7 meters.

Despite the results shown in this work, there remain
problems to be solved. The feature extraction algorithm
puts constraints on the environment, especially the need of
characteristic walls. It would be very useful to either extend
it to lift the constraints or to combine it with other types



of landmarks. This might allow localization in more generic
environments and larger areas. The latter would also allow to
explore the limits of the SLAM algorithm in terms of larger
(and more gradually explored) maps.

The map model leaves room for improvement. Map prun-
ing and incorporating negative evidence (the information that
a certain landmark was not observed) might improve the
quality of the map and reduce the likelihood that the particle
filter might diverge.

Work has been done to combine particle filters with
occupancy grids while remaining computationally efficient
[12]. It would be interesting to compare our feature-based
approach to an occupancy grid representation.
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