
SAUC-E 2011 - The Hanse Team
Jan Hartmann, Dariush Forouher, Marek Litza, Helge Klüssendorff, Benjamin Meyer, Tjorven
Mintzlaff, Patrik Stahl, Christian Strakerjahn, Thomas Tosik, Patrick Zenker and Erik Maehle

Abstract—This paper describes the University of
Lübeck’s entry to the 2011 SAUC-E competition. Our
AUV HANSE has been specifically designed for the
SAUC-E competition by students in practical courses and
master thesis’ throughout the last three years. Besides the
thrusters, sonars, and the orientation sensor, it is built of
commercially available commodity products.

As we are joining the SAUC-E for the third time since
2009, in this year the focus for innovation in our project
has shifted from hardware to software. We have further
greatly improved the reliability of the robot. This paper
will describe our new localization, navigation, and object
recognition algorithms as well as the improvements to
the hardware reliability and test procedures, including
our new simulator.

I. INTRODUCTION

The main goal of the Hanse project is to encourage
our student’s interest in robotics in general and the
challenges of underwater robotics specifically - and of
course to build a robot which provides the features of
robustness and expandability necessary for a project
designed to run for several years. Our notion is that
this can be best achieved in a competitive environment.

The AUV Hanse has thus been developed specifi-
cally for the SAUC-E in a series of practical courses
(bachelor as well as master) and several master the-
sis’ by students over the last three years. Hanse’s
main housing, a waterproof Peli case, is mounted
to a Polypropylene (PP) base frame. A number of
Buccaneer connectors provide a generic interface from
the controlling laptop to thrusters and sensors, which
are also mounted to the base frame. This ensures the
expandability of the design concerning sensors as well
as control hardware.

The robot control software runs on a 12.1” standard
laptop. A modular software framework was developed
in 2010 and greatly expanded in 2011. It is based on the
multi-platform C++ libraries Qt1 as a general API and
OpenCV2 for image processing. It runs on Windows as
well as Linux, while the latter one is preferred because
of the better control over the operating system.

The Hanse robot won the innovation prize in the
SAUC-E 2009, where the focus was on building the
robot itself and the handmade thrusters. In 2010, the
latter were replaced by the more robust SeaBotix
thrusters and a scanning sonar was added. The new
software framework was developed and due to changes
in the mission rules, new algorithms were developed.

1http://qt.nokia.com
2http://opencv.willowgarage.com

Fig. 1. The Hanse AUV.

In retrospective, because of the vast amount of software
modules the interaction of software and hardware could
not be tested sufficiently before the competition and the
result was not as good as hoped.

This year, we tackled the problems of 2010, mainly
the stability of hardware and software and the lack of
real testing. Few changes have therefore been applied
to the robot, including a new Absolute Heading Ref-
erence System (AHRS) and an additional single beam
sonar. The effort was focused on software development
and therein on navigation and task planning algorithms.
A simulator - including 3D visualization, underwater
physics, visual and sonar sensors - was developed to
ease the testing procedure.

The remainder of this paper will be structured as
follows. First, the robot hardware will be discussed in
more detail in Section II. In Section III the software
architecture and the main algorithms will be presented.
A financial summary and risk assessment will be given
in Sections IV and V. Then hard- and software will be
evaluated in comparison to the last two years to give
conclusion on this year’s project innovation. Finally,
the team members and their responsibilities within the
team will be introduced.

II. HARDWARE
A. Overview and mechanical actuators

The base frame of our AUVs owes the form to a
sledge. This form was chosen because the thrusters
can be attached at any position on the sides of the
scaffolding. Thus the position of each thruster can be
evaluated during the test runs, and can be mounted
to its optimal fixing point. Another advantage of this
form is that the AUV can be carried conveniently by

Fig. 2. Hardware and electrical overview of the Hanse AUV. Power supply in black/red, signals in green.

two people. The base frame of the AUV is made out of
50 mm Polypropylene (PP) tubes. We have chosen this
material because of its light weight and the possibility
of welding single parts together easily. To increase the
solidity of the frame it was strengthened by glass fiber
sheathing. Additional holes, which are drilled in the
frame in distances of 10 cm apart, allow the flooding
of the frame, so it has near neutral buoyancy.

On the base frame a waterproof case (Pelicase 1400)
is fixed, which is the main pressure hull of the robot.
An internal frame, made of steel and wood, makes the
relatively soft case inherently stable against expected
amounts of pressure. With its inside measurements of
30x22.5x13.2cm the case offers enough space for most
electronic parts and power supply.

Several modules like thrusters and sensors are placed
outside the main case. Their exact mixture and position
on the frame can be adapted to the actual mission.
All modules are attached by waterproofed BULGIN
Buccaneer (PX0748/P) connectors to the main case.
To ensure stable horizontal orientation of the robot,
external weights can be attached on to the frame. The
Hanse AUV in the current version can be seen in Fig. 1.

1) Motors: For propulsion four SeaBotix BTD150
thrusters are attached on the main frame. Two are
placed on the sides for horizontal movement and
rotation around the yaw axis. The other pair is placed
in front and back of the main body and allows diving.
Because of positive buoyancy the thrusters must work
to submerge.

2) Camera housing: As camera housing for our
webcams we use a lamp housing that is usually used

for illuminating garden ponds. These cases have a 5
mm glass panel, and are waterproof up to 10 m.

3) Cutting mechanism: This year we build an active
cutting device. It consists of V-formed guiding arms
and a small knife, moved by a servo. The servo is
placed inside a waterproof container together with a
SD20 servo-driver (Devantech). The module is con-
nected to the main system by I2C-Bus.

B. Electronic design

The general electronic design can be seen in Fig. 2.
Each component will be introduced in detail in the
following sections.

1) Power Supply: The Hanse power supply con-
sists of three electrical circuits. The first contains
the notebook, the central processor unit, and one
webcam connected over USB. The second circuit is
providing power for the sonars. It contains two small
serial connected lithium-polymer-accumulators with
740mAh and 11.1V each.

The third, the main power circuit supplies all re-
maining modules. It is powered by a three-cell high
performance lithium-polymer-accumulator providing
10 Ah at 11.1 V. The battery is secured by a fuse before
its first connector. This circuit can be disconnected
by the kill switch, located on the top of the case.
Pressing it interrupts the electricity supply of the
engines immediately, and the AUV emerge.

2) Main Computer: Similar to the last year we
use the ACER “AspireTimeline1810TSpecial Edition”
notebook as onboard computer. It contains an In-
tel(R)Core 2 Duo processor SU7300 (1, 2 GHz), and

500 GB hard disc. With a width of 285 mm we have
around 5mm space between the notebook and the case
at the left and right side. This demands careful space
management inside the case.

3) Xsens MTi/AHRS Sensor: We added the Xsens
MTi/AHRS Sensor to the system this year. It replaces
the compass and our old IMU-Unit. The Xsens MTi
is connected to the system by USB, which allows us
to read the sensor at 1 Mbps. It provides the system
with reliable attitude and heading informations, that is
used inside the navigation and localization algorithms
and to correct sonar images.

4) Pressure Sensor: To measure the actual depth,
we use a ’MS5541-CM’ pressure sensors from Inter-
sema. It has an absolute pressure range from 0 to 14
bar put out as 16 Bit value and achieves an accuracy
of 2 cm. It is connected over a self built SPI-to-I2C
translator that is located in the housing of the pres-
sure sensor. This translator additionally computes the
temperature compensated pressure data as described in
the datasheet of the sensor and gives the result to the
I2C-Master.

5) Sonar Modules: We use the “Model 852 ultra-
miniature scanning sonar” from Imagenex for local-
ization. This sonar has a beam width of 2.5 degrees x
22 degrees. Adjusting the gain, ranges from 150 mm
up to 50 m are reachable. Additional it has two step
sizes: normal (3 degrees) and fast (6 degrees). With
a maximum range of 50 m one rotation requires 16
seconds in case of the normal mode and eight seconds
in case of the fast mode. The sonar can work with 675
or 850 kHz. We are using 850 kHz to minimize the
cross noise with the second sonar.

The second sonar module, the “Model 852 ultra-
miniature echo sounder”, uses 675kHz as working
frequency. It has a conical beam of 10 degrees width,
and range scales up to 50 m. We use it primary for
wall detection, so it is oriented to the port side.

Both sonar modules are connected over an RS232
serial interface. To avoid noise from the Motors we
shield the sonar modules by using an “Expert Opto-
Bridge” optical coupler module (Gude) for communi-
cation and a separated power supply.

6) Cameras: We use two USB webcams ’SPC1030’
from Philips. The first is facing forward primarily
for ball detection. The second camera is mounted
facing downwards for pipe detection. The cameras grab
640x480 pixel images with a frame rate of 5 Hz.
The “SPC1030” webcam has a lens view angle of 80
degrees that is decreased by the water to 60 degrees.

7) Pinger detection: In order to detect the 12kHz
pinger three hand-made hydrophones are mounted onto
the ’sledge’. The first step of signal processing contains
a set of analogue filters which form a bandpass with
constant amplification rate. In the second step a simple
adjustable amplifier is located, to adept the required
amplification to identify the pinger. The processing
and orientation computing is done by an ATmega

Fig. 3. Snapshot of the software in action.

microcontroller, that estimates the direction by analyz-
ing the different times of arrival (TOA) of the three
hydrophones.

8) Bus Network & Universal Interface Device: The
communication interface between external modules
and the notebook is done by our self-built “Universal
Interface Device” (UID). As hardware platform we use
a small ATmega168-Board from chip45, but the UID
architecture is not determined to this board, it can be
used for almost any type of Atmel 8-bit processors. The
UID is connected by USB and is addressed by a serial
interface with a configurable speed from 2400 bps up
to 2 Mbps. The standard communication speed is set to
115200 baud in order to allow the using of a normal
terminal program to communicate with the UID. To
buffer the incoming and outgoing serial data, a 256
Byte ring buffer both for receive and transmit unit is
implemented. Beside the I2C and SPI communication,
additional features like GPIOs, 8 ADC channels, a
small servo-controller for up to three servo motors as
well as RS485 Transceiver are implemented.

III. SOFTWARE

We developed a software framework specifically
written for Hanse and the SAUC-E competition. The
design goals were:
• The framework must run under Microsoft Win-

dows.
• The framework must be modular.
• It should have a graphical control and visualiza-

tion interface.
• It must be written in C/C++.
The first requirement was due to the fact that Win-

dows was the robot’s operating system at the time of
the specification. We have switched to Linux since
then.

We settled on implementing the framework using Qt
4, a cross-platform application framework, written in
C++. Qt provides an easy-to-use GUI toolkit, which

Fig. 4. Modules and their dependencies. Task use several behaviors to perform a SAUC-E mission. Behaviors adjust motor speeds based
on sensor and localization information.

we used to display runtime information on the state of
the robot. It also provides platform independent access
to many important functions like file access, threads,
locking and dynamic memory management. One of
the most interesting aspects of Qt is its Signal/Slot
implementation of the Observer pattern, which we
used heavily.

The software part of the Hanse project will be
described in more detail in the following sections. First,
the general architecture will be shown. Then some of
the more interesting algorithms will be highlighted,
including image processing, localization, navigation,
and behavioral algorithms. Finally, the simulator will
described.

A. Architecture

The basic architecture of our framework is shown in
Fig. 4. It consists of a slim core, which includes the raw
graphical user interface as well as a couple of library
classes. The core provides an message-based logging
interface (using Log4Qt3), a serial port interface (using
qextserialport4) and some code for calculating and
plotting control loops (an implementation of a PID
control loop). It also provides a configuration interface
(using .ini files) and a data logging library, which logs
accumulating (numerical) data into CSV files.

The rest of the framework consists of modules, each
implementing a C++ base class RobotModule. At the
time of this writing roughly two dozen modules have
been implemented, ranging from low-level hardware

3http://log4qt.sourceforge.net/
4https://code.google.com/p/qextserialport/

drivers to controlling behaviors. All modules are orga-
nized in a tree, with each module depending on one or
more other modules.

Each RobotModule has its own thread attached to
it. All Qt Slots are executed within a modules own
thread. To mitigate the difficulties inherent in multi-
threading, some design decisions have been made to
reduce the dangers of deadlocks and unprotected access
to common data structures. The first design decision
was to ensure that the graph, which the modules span,
is a directed acyclic graph (DAG) and thus contains no
loops. This avoids circular data dependencies between
modules. Another important side-effect of this is to
keep the overall complexity on a bearable level. Even
a modular software framework can become unmain-
tainable if too many dependencies crop up between
modules over time.

The second and more important design decision
to avoid threading problems was to heavily use the
Signal/Slot infrastructure of Qt. Signals/Slots allow
objects in different threads to communicate asyn-
chronously, e.g. if a sensor receives new data, it will
emit a Signal containing that data. If another module
has connected a Slot to this Signal, that Slot will be
called once the Signal is emitted.

B. Image Processing

The two cameras equipped on Hanse are used in two
tasks: the inspection of the pipeline and the freeing of
the mid-water target. As the webcams that are used
have a low image quality, we decided to use a color-
based object recognition approach rather than edge or

Fig. 5. Finding the location of the pipe relative to the robot. Left: original rgb image taken at the SAUC-E 2010. Center: segmentation
channel (in this case blue channel). Right: binary image after applying the Otsu thresholding algorithm. The line in the middle of the white
patch indicates the extracted position and direction of the pipe, which is obtained using 2D moments.

corner-based feature extraction techniques. Each image
is therefore segmented in the appropriate color channel
(blue for the pipe and saturation for the mid-water
target). A good segmentation threshold is found using
Otsu’s algorithm, which tries to minimize inner class
variance and maximize outer class variance [1]. This
provides some degree of invariance to lighting.

The presence of either the pipe or the mid-water
target is decided based on the number of pixels be-
longing to the object class and the mean position of
these pixels. The pipe orientation can further be found
using centralized image moments [2] on the segmented
image S, where

S(x, y) =

{
1 , if the pixel (x,y) belongs to the object
0 , else

(1)
The centralized moment of order p+q is then defined

as

µpq =
∑
x

∑
y

(x− x)p(y − y)qS(x, y), (2)

and the orientation of the object can be found as

θ =
1

2
atan2

(
2µ11

µ20 − µ02

)
. (3)

An example of the image processing algorithm can
be found in Fig. 5. Image processing for the mid-water
target closely follows the one presented for the pipe.

C. Localization & Navigation

This section will describe the localization and navi-
gation technique in detail. The former can be subdi-
vided into two main parts: the sonar image feature
extraction and the localization algorithm itself. The
latter will be presented in form of a state chart.

1) Feature Extraction: The task of the sonar image
feature extraction is the identification of prominent
parts of a sonar image, i.e. a full 360◦sonar scan. We
specifically search for wall-like features, as they are
easy to identify and present in most man-made environ-
ments. Such features have a characteristic signature in a

sonar image: they show a strong echo at and before the
location of the wall and a significant drop in intensity
behind the wall.

The filter chain described here is based on the one
presented in [3] with further improvements and simpli-
fications. We designed a multi-scale gradient filter to
enhance the regions of the sonar image characteristic
to the wall features. 1D Haar wavelet responses at
different scales are multiplied for each beam pixel to
form the beam gradient G as

G(x) =
∏
k∈K

(
x∑

i=x−k

B(i)−
x+k∑

i=x+1

B(i)

)
, (4)

where K is the set of all scales to be evaluated and
B(i) is the echo intensity at distance i. The gradient
filter is illustrated in Fig. 6(a).

The Haar wavelet responses can be efficiently cal-
culated using integral images. The integral image is in
this case defined as the sum of intensities up to the
current distance:

I(x) =

x∑
i=0

B(i). (5)

The gradient filter response can now be calculated
as:

G(x) =
∏
k∈K

(2I(x)− I(x− k)− I(x+ k)). (6)

2) Heuristics: The filtered sonar image is now an-
alyzed to find wall locations. First, a non-maximum
suppression is performed to identify potential walls.
For each beam, those local maxima are discarded that
have a gradient intensity of less than one tenth of the
maximum gradient intensity in the last sonar image.
Of the remaining maxima, for each beam, all but the
maximum furthest from the robot are discarded, as we
assume walls to absorb the whole sonar beam.

Now, further heuristics concerning the neighbors of
wall features are applied. First, walls are assumed to be
continuous. Assume the distance of the wall feature of
beam j to the robot is wj . Then the location of that wall

+1
-1 -1

-1

+1
+1

-1
-1
-1
-1

+1
+1
+1
+1× × ×wall at index x

in front of wall

behind wall
(relative to robot)

(a) Close-up of a wall feature
and the 1D Haar wavelets to be
applied.

(b) A 360◦scan as provided by
the scanning sonar.

(c) Sonar image after applying
the gradient filter.

(d) extracted wall features after
applying non-maximum sup-
pression and heuristics.

Fig. 6. Illustration of the sonar image filter chain, including the gradient filter and heuristics.

walls

particles

most likely
position

walls walls

best position

Fig. 7. Illustration of a particle filter at work. Left: The set particles (red) is the estimation of the robots position. The most likely position
is assumed to be the centroid of the cloud. Middle: After predicting the movement of the robot using the AHRS and a Gaussian motion
model, the variance of the particle cloud increases. Right: The particles are weighted according to how well the observations match the
map, and then resampled to weed out the bad particles.

feature is only correct if the distances of the preceding
and following wall features do not differ too much, or

|(wj − wj−1)− (wj+1 − wj)| < Tcont, (7)

where Tcont is a fixed threshold.
Secondly, walls are assumed to have some lengths.

Therefore, if the number of wall features in a window
of size k surrounding a certain wall feature is less than
k−1
2 , then this wall feature is assumed to stem from

image noise rather than real walls. Such features are
therefore also discarded. The remaining wall features
are finally transformed to a 2D position relative to
the robot, depending on the corresponding sonar head
position and AHRS heading. The transformed wall
features are then passed to the localization algorithm.

The result of the filter chain can is illustrated in
Fig. 6(b) to 6(d), which show the original sonar image,
the result of the gradient filter, and the extracted wall
features after applying the heuristics.

3) Localization: The filter chain finishes with a set
of observations - a point cloud with positions relative
to the robot. We localize our robot using these obser-
vations and an a priori map, which has been created
beforehand. The position of the robot is estimated
using a particle filter (which is an implementation of
the recursive Bayes filter, [4]). A particle filter consists
of a set of particles, each one a hypothesis of where the
robot might be (see Fig. 7). Once a new observation has

passed through the filter chain, the movement of the
robot since the last particle filter update is estimated
(using a Gaussian motion model and data from the
XSens AHRS). This results in a spreading of the
particles, as the uncertainty of where the robot might
be has increased.

Now for each particle a confidence value is calcu-
lated, which denotes how well the observation would
match the map if the robot were in this particle’s
position. Then the particles are weighted with this
confidence value and normalized so that the sum of all
weighted particles is exactly one. Bad particles (which
don’t represent the robot’s true position) thus get a
small weight whereas good particles receive a large
weight.

Finally the particle set is resampled. This is called
importance sampling and is the most important step
of a particle filter. Each particle’s importance weight
equals the likelihood that this particle represents the
true position of the robot. During resampling a new set
of particles is chosen based on the old set. The new
set will have the same size as the old set. However bad
particles with a low importance weight will likely be
missing in the new set. Particles with a high importance
weights on the other hand will be represented with
multiple copies.

After the resampling, the new set of particles is an
approximation of the Bayes posterior representing the
position estimate of the robot.

Idle

Adjust depth

Adjust heading

Move forward

Move to Waypoint

Adjust heading

go to waypoint

reached target
depth

new localization
estimate

target heading
reached

robot pos - waypoint pos < Td

target heading reached

Fig. 8. State chart for the navigation. To reach a waypoint, the
robot first moves to the target depth. Then the heading towards the
goal is adjusted and the robot moves forward until a new location
is estimated (approximately every 8 seconds). When a waypoint is
reached, the robot is turned to the target heading.

4) Navigation: The navigation capabilities of Hanse
are limited by the time difference between two location
estimates, which is defined by the time it takes the
scanning sonar to rotate 360◦. Therefore, between two
estimates, there are approximately 8 seconds in which
only changes in orientation (through the AHRS) and
no other movement information is known. This needs
to be taken into account by the navigation algorithm.

The navigation algorithm is designed in a “point and
shoot” manner, keeping it as simple as possible. Fig. 8
describes the algorithm as a hierarchical state machine.
When a new waypoint is set, first, the robot is moved
to the target depth. Then, until the target position is
reached, iteratively, the heading towards the goal is
adjusted and the robot moves forward until a new
location is estimated. The adjustment of the heading
is therein controlled by the AHRS and the forward
speed is set relative to the distance between the robot
and goal.

D. Planning and Task Structure

In our framework, a task encapsulates everything
that belongs to one single SAUC-E mission. A task
is a concatenation of several behaviors. A behavior is
an elemental portion of of a mission with a define entry
and exit state. A task will start a set of behaviors in
the defined order. If a behavior enters its exit state, the
next behavior is started.

A task performing the pipe inspection mission could
thus consist of a list of the following behaviors:

1) move to waypoint “pipe center”
2) do pipe following until at waypoint “pipe end 1”
3) perform 180◦turn
4) do pipe following until at waypoint “pipe end 2”

Fig. 9. Snapshot of the simulation.

Each of these behaviors is implemented as a subclass
of RobotModule. They usually consist of a simple
state machine and a controller for angular and forward
speed. The input of the controller may be raw sensor
measurements (e.g. for the 180◦turn), data from the im-
age processing algorithms (e.g. for the pipe following),
or localization data (e.g. for determining the position
relative to the pipe).

E. Simulation
This year we used a physical simulation of Hanse

to perform thorough dry-dock testing of all behaviors
and higher level code in Hanse. The simulator we used
was developed [5] by Thomas Tosik[?], specifically
for this purpose. It is based on the bullet physics
engine and the JMonkey 3D engine and models the
behavior of our AUV in an underwater environment
sufficiently accurate. Fig 9 shows a snapshot of the
simulator. The simulator runs independently to the
software framework of the robot and is connected to
it via a TCP connection.
The simulator supports multiple AUVs. Special
attention was laid on the correct physics and the
sensor systems, especially the cameras and the sonar.
The simulator graphics allow for more natural looking
underwater environments through the use of various
filters like underwater-fog and depth-of-field.

IV. FINANCIAL SUMMARY
A table of the total expenses for the Hanse AUV can

be found in Tab. I on the last page, excluding traveling
costs for the competitions. It lists the expenses of the
last two SAUC-E combined and the expenses for the
SAUC-E 2011. Total new expenses are at 4,484 Euro,
where the new AHRS and echo sounder account for the
3,700 Euro. Total expenses are now at 13,843 Euro for
the last three years.

V. RISK ASSESSMENT
Potential risks and precautions taken are listed in

Tab. II on the last page. In comparison to SAUC-E
2010, additional precautions have been taken consid-
ering communication and software errors.

VI. CONCLUSION
This section will provide some final conclusions on

the state of the Hanse project as well as an evaluation
of the work done between the last and the current
SAUC-E. Sections II and III showed the current state
of the hardware and software. We described some of
the most important new algorithms in the fields of
image processing, navigation, and planning in detail.

In terms of hardware, few additions were made, so
that the existing hardware could be better tested. As
of now, we were therefore able to put more effort into
elaborately testing old and new parts of the software,
while in the last years the focus for tests was much
more on new hardware parts. The simulator further
helped the testing procedure, as new algorithms in
navigation and task planning could first be tested in an
ideal environment to wield out most of the conceptual
errors.

New hardware was integrated to help in those mis-
sions that we were not able to complete in SAUC-
E 2010. The XSens MTi AHRS is used to improve
the localization performance, so that we can navigate
between different missions. The echo sounder is used
to perform the wall following while tracking the AUV
position using the scanning sonar. The new pinger filter
chain will allow us to follow the ASV.

Specific new or improved algorithms are shown in
Sec. III-B to III-D. While in the last years, most higher
level parts of the software were first tested in the
competition itself, due to the simulator and the more
robust hardware, we will likely be able to perform
sufficient testing for all parts of the software before
the competition. We will then, for the first time, be
able to tackle all but the last mission (for which we
would need an acoustic modem).

REFERENCES

[1] N. Otsu, “A Threshold Selection Method from Gray-level His-
tograms,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 9, no. 1, pp. 62–66, 1979.

[2] S. O. Belkasim, M. Shridhar, and M. Ahmadi, “Pattern recog-
nition with moment invariants: A comparative study and new
results,” Pattern Recognition, vol. 24, no. 12, pp. 1117–1138,
1991.

[3] D. Forouher, J. Hartmann, M. Litza, and E. Maehle, “Sonar-
based fastslam in an underwater environment using walls as
features,” ICAR 2011, 2011.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT
Press, 2005.

[5] T. Tosik, “Physikalisch realitätsnahe simulationsumgebung für
das auv hanse, mit integration in die bestehende steuerungs-
software,” Master’s thesis, University of Lübeck, 2011.

VII. HANSE TEAM MEMBERS

Dariush Forouher Project team leader.
Dariush Forouher is working as a Ph.D stu-
dent at the Institute of Computer Engineer-
ing, University of Lübeck. He is a member
of the Hanse team since its foundation and
is involved in underwater robotics since
2007. His interests lie in navigation and
software architecture. His responsibilities
are the general software framework as well
as low-level drivers.

Jan Hartmann Project team leader. Jan
Hartmann is working as a Ph.D student
at the Institute of Computer Engineering,
University of Lübeck. He is also a member
of the Hanse team since its foundation.
His interests lie in image processing and
machine learning. His responsibilities are
all things related to image processing. He is
also overseeing the development of higher
level behaviors and navigation.

Helge Klüssendorff Senior software en-
gineer. Helge Klüssendorff is a student at
the University of Lübeck and currently
working on his Master thesis. He is a
member of the Hanse team since 2009.
He has done work on the core framework,
navigation, computer vision and behaviors.
His interests lie in computer vision and
mobile robots.

Marek Litza Academic advisor of Hanse
Team since its foundation in 2009. Marek
Litza is research assistant at the Insti-
tute of Computer Engineering, University
of Lübeck. Besides technical aspects, his
main interest lie in the question: ”How can
we teach a student team successful robot
development?”

Benjamin Meyer Hardware managment,
construction of the robot and maintenance.
Benjamin Meyer is working as a Master
student at the Institute of Computer En-
gineering, University of Lübeck. He is a
member of the Hanse team since 2009. His
interests are located in the construction of
mobile robots, hardware design and sen-
sor networks. He is responsible for robot
maintenance and further development of
the robot Hanse.

Tjorven Mintzlaff Construction of the
robot and hardware development. Tjorven
Mintzlaff is currently in the process to
make his B.Sc. in computer science. He
is a member of the team since the last
winter term. His interests are located in
the hardware construction of robots and
the programming of embedded systems.
His responsibilities are the development of
new periphery and the construction of the
backup hardware.

Patrik Stahl Software engineer. Patrik
Stahl is also in the process of making his
B.Sc. in computer science. He, too, is a
member of the team since last winter term.
His responsibilities are the implementa-
tion of new behaviors and software testing
within simulation.

Christian Strakerjahn Hardware design.
Christian Strakerjahn is a B.Sc. student at
the University of Lübeck. He has joined
the Hanse team in last winter term and
has since been working on the design and
integration of the pinger filter chain.

Thomas Tosik Thomas Tosik is a student
at the Institute of Computer Engineering,
University of Lübeck. He is part of the
Hanse team since its foundation. In the last
year he developed a simulation environ-
ment for AUVs as his diploma thesis. The
simulator is now heavily used in the Hanse
development and testing.

Patrick Zenker Software engineer and
hobby photographer. Patrick Zenker is cur-
rently in the process of completing his
B.Sc. in computer science. He is a member
of the team since the last winter term.
His responsibilities and interests are lo-
cated in the implementation of new behav-
iors, especially wall following and sequen-
tial processing of different behavior tasks.
Through his hobby, photos and videos are
generated at every opportunity.

Year Item Cost (Euro)
2009/10 Mechanical (base frame, case, connectors) 355

Electrical (fuses, emergency switch, cables, etc.) 50
4x SeaBotix BTD150 Thrusters 1,280
2x MD22 Motorcontrollers 140
11.1V 10Ah Lithium Polymer Cells 130
2x 11.1V 740mAh Lithium Polymer Cells 40
2x Acer 12,1” notebooks 1,000
Honeywell HMC6343 compass 100
Analog Devices ADIS16354 IMU 250
Intersema MS5541-CM pressure sensor and casing 14
Imagenex Model 852 Scanning Sonar 6,000
total 9,359

2011 XSens MTi AHRS 1,400
Imagenex Model 852 Echo Sounder 2,300
Improved USB cables and hubs 60
Improved WLAN stick and antennas 50
Pinger filter chain 30
Spare case
Peli case 130
Buccaneer connectors 140
Electrical (fuses, emergency switch, cables, etc.) 50
2x MD22 Motorcontrollers 140
11.1V 10Ah Lithium Polymer Cells 130
2x 11.1V 740mAh Lithium Polymer Cells 40
Intersema MS5541-CM pressure sensor and casing 14
total 4,484
sum 13,843

TABLE I
TOTAL EXPENSES FOR THE HANSE AUV. EXPENSES FOR SAUC-E 2009 AND 2010 ARE LISTED ON TOP, THIS YEAR’S EXPENSES

BELOW. ALL COSTS ARE LISTED IN EURO AFTER TAXES.

Risk Precaution
Loss of control

• timers end tasks if a behavior fails
• thruster speed will be set to 0 on communication failure
• kill switch

AUV Recovery
• AUV will surface if thrusters are off
• AUV can be easily recovered using e.g.

Collisions with objects or wall
• AUV speed too low to damage AUV in collision

Injuries due to lifting the AUV
• low weight
• AUV can be easily lifted by two people at any point of the base frame

Injuries due to sharp edges
• most parts on the robot made of plastic
• the cutting mechanism is protected by the guiding arms so that e.g. fingers cannot get near

the cutting knife
• no sharp edges on other exposed parts (frame and case)

Injuries due to thrusters
• propeller casing secures the thrusters

Injuries due to electrical shocks
• low voltages and currents
• fuses in all main power lines in the case

TABLE II
RISK ASSESSMENT FOR THE HANSE AUV.

