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Abstract

The developed world is awash with sensors. However, they are typically locked into unimodal closed
systems. To unleash their full potential, access to sensors should be opened such that their data and
services can be integrated with data and services available in other information systems facilitating novel
applications and services that are based on the state of the real world. We describe our vision and
architecture of a Semantic Web of Things: a service infrastructure that makes the deployment and use
of semantic applications involving Internet-connected sensors almost as easy as building, searching, and
reading a Web page today.
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1 INTRODUCTION

Sensors are ubiquitous in infrastructures, appliances, mobile phones, and wireless sensor net-
works. Their widespread deployment represents a significant financial investment and technical
achievement and the data they deliver is capable of supporting an almost unlimited set of high
value proposition applications. This is a powerful and profitable confluence of need, capability,
and economic opportunity – yet the true potential of sensor technology is massively under-
exploited.

A central problem hampering success is that sensors are typically locked into unimodal closed
systems. For example, motion detection sensors in a building may be exclusively controlled by
the intrusion detection system. Yet the information they provide could be used by many other
applications, e.g., placing empty buildings into an energy-conserving sleep mode or locating
empty meeting rooms. Unlocking valuable sensor data from closed systems has the potential to
revolutionize how we live. To realize this potential, a service infrastructure is needed to connect
sensors to the Internet and publish their output in well-understood, machine-processible formats
on the Web thus making them accessible and usable at large scale under controlled access.

So far, the sensor world and the Web world have been largely disconnected, requiring the
human in the loop to find, integrate and use information and services from both worlds in a
meaningful way. Publishing sensor-related data on the Web would help to find relevant informa-
tion by directly accessing sensor data, i.e., by directly observing the real world, integrated with
related information from the Web. Already today smart phone applications such as CenceMe
exist that infer the activity of the person wearing the phone from sensor data and publish this in
the Web. Another example are energy consumption sensors such as the Ploggs that end-users can



2

install in their house to measure energy consumption of appliances, for example to compare their
energy consumption with that of other, similar households to identify opportunities for saving
energy. To do this easily, with open interfaces and data formats, and at large scale, technologies
from the Web need to be customized for and integrated with their relevant counterparts on the
Internet of Things (IoT). This means that application experts who are able to publish Web pages
today should have the same easy-to-use technologies at hand to publish sensor descriptions,
sensor data and make use of sensor outputs without requiring deep knowledge of embedded
computing. In particular, we believe that users are primarily interested in real-world entities
(things, places, and people) and their high-level states (empty, free, sitting, walking, ...) rather
than in individual sensors and their raw output data. Therefore, the infrastructure has to provide
appropriate abstractions to map sensors and their raw output to real-world entities with high-
level states.

Real-world entities are rarely useful when considered in isolation – the ability to put multiple
entities into a common semantic context is needed. For example, we want to reason about
rooms being in the same building, belonging to the same company, with nearby parking spots.
This requires a machine-readable representation of world knowledge and appropriate reasoning
capabilities. Further, this representation needs to be unified - while most sensor data published so
far on the Web relies on heterogeneous data models and serializations. In addition to discovery
and query facilities on static properties of those machine-readable representations of sensors
and real-world entities, specialized search approaches to support queries on the dynamically
changing state of sensors or entities consisting of many sensors (possibly integrated with static
data), will be required, e.g., which rooms in a building are currently occupied.

There are efforts to realize a Semantic Sensor Web including the SENSEI, SemSorGrid4Env,
Exalted, and 52 North projects, as well as work by the Kno.e.sis Center, CSIRO, and the Spanish
Meteorological Agency. Most notably, the Open Geospatial Consortium’s (OGC) Sensor Web
Enablement (SWE) [1] project builds a framework to publish and access sensor data using XML-
based protocols and APIs. The choice of XML, however, ties SWE to system-specific schemas,
providing neither semantic interoperability nor a basis for reasoning. This problem is in the focus
of the Semantic Sensor Web [2] which proposes annotating sensor data with semantic meta-data,
whose meaning is machine-understandable through vocabulary definitions, i.e., an ontology.
By annotating sensor-related features such as the network, deployment, data formats, etc., it
becomes possible to automate further tasks, e.g., deployment, maintenance, and integration.

However, these efforts have limitations which we are addressing in SPITFIRE: There is no
general-purpose approach compatible with the growing body of semantic world knowledge
available as Linked Open Data (LOD) on the Web; existing efforts are either too sensor-centric
or too knowledge-centric, i.e., they do not provide comprehensive, integrated abstractions for
things, their high-level states, and how they are linked to sensors; and a number of important
services are missing in existing efforts, notably support for semi-automatically creating Linked
Data representations of sensors and things, as well as efficient search for things based on their
current states.

SPITFIRE addresses these limitations by providing i) vocabularies to integrate descriptions of
sensors and things with the LOD cloud, ii) semantic entities as an abstraction for things with
high-level states inferred from embedded sensors, iii) semi-automatic generation of semantic
sensor descriptions, and iv) efficient search for sensors and things based on their current states.
In addition, SPITFIRE integrates these ingredients into a unified service infrastructure to ease
adoption of the Semantic Web of Things for end-users and developers. On top of this infras-
tructure, applications are assembled by issuing search requests for matching (real or aggregated)
sensor services and by invoking found services directly.

This paper proceeds with the description of an exemplary use case that will be used to illustrate
the state of the art with respect to integration of sensors into the Web upon which SPITFIRE
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builds, followed by a description of the novel contributions of SPITFIRE and a brief discussion
of an existing operational prototype.

2 USE CASE AND REQUIREMENTS

Due to an emergency, a traveling salesman drives to his company headquarters to hold an ad-
hoc meeting. For that, he must find a currently free room in the headquarters that are dispersed
over a large area in order to hold an ad hoc meeting. After that, he informs his colleagues and
searches for a parking spot close to the building.

Imagine that sensors, which are connected to the Internet, measure the state of real-world en-
tities such as meeting rooms and parking spots. Internet-connectivity not only requires network-
level integration (IP), but also application-level integration to enable structured access to sensor
data. To enable automatic reasoning about sensors (e.g., finding free parking spots close to
meeting room), these sensors, their output, and their embedding into the real world must be
described in a machine-readable format that is compatible with data formats used to describe existing
world knowledge in the Web. Not only syntax and semantics of such a description must be
defined, but efficient mechanisms to annotate newly deployed sensors with appropriate descriptions
are required.

Users are primarily interested in real-world entities (e.g., meeting room) and their high-level
states (e.g., room occupied) rather than sensors (e.g., sensor 536) and their raw output (e.g.,
motion detected at time T). Therefore, appropriate mechanisms to establish an explicit mapping
of sets of sensors to real-world entities they are monitoring (e.g., all motion detection sensors in a
certain room) must be provided. Further, the raw output of these sensors (e.g., motion detection
events) has to be mapped to a high-level state (e.g., room occupied). Often, this involves fusing
the output of multiple sensors (e.g., multiple motion sensors are needed to cover a large room)
or even scheduling sensors for energy efficiency (e.g., only one out of two available battery-
powered motion sensors is required to cover a smaller room).

Finally, the user wants to search for real-world entities by their current state (e.g., empty meeting
rooms). Often, such search requests refer not only to the output of sensors, but also to further
machine-readable information that is available elsewhere in the Web (e.g., company maps,
meeting schedules, calendars). The search engine needs to integrate these different static and
dynamic data sources in a seamless way.

3 SEMANTIC SENSOR WEB: STATE OF THE ART

Realizing the above use case on an Internet scale requires i) that the sensors are connected to
the Internet, ii) that machines can discover and understand the semantics of the data returned
by the sensors, and iii) a technique to find the sensors that could provide the relevant data.
This section briefly discusses the state-of-the-art in relation to this with a focus on Internet-scale,
Web-based technologies upon which SPITFIRE builds, employing the use case as an example.

3.1 Connecting Sensors to the Internet and the Web
Integrating resource-constrained sensors into the Internet is difficult since ubiquitously deployed
Internet protocols such as HTTP, TCP or even IP are too complex and resource-demanding. To
achieve integration, light-weight alternatives are required that can easily be converted from/to
Internet protocols.

Only recently, two such alternatives are gaining momentum: 6LoWPAN and CoAP. 6LoW-
PAN [3] is a light-weight IPv6 adaptation layer allowing sensors to exchange IPv6 packets with
the Internet. Currently, only UDP is specified as TCP is considered too resource consuming.
CoAP (Constrained Application Protocol [4]) is a draft by IETF’s CoRE working group, which
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deals with Constrained RESTful Environments. It provides a light-weight alternative to HTTP
using a binary representation and a subset of HTTP’s methods (GET, PUT, POST, and DELETE).
In addition, CoAP provides some transport reliability using acknowledgements and retransmis-
sions. For a seamless integration, reverse proxies may convert 6LoWPAN and CoAP to TCP and
HTTP so that sensor data can be accessed using these omnipresent protocols. Also, Internet-based
clients could directly use CoAP on top of UDP.

6LoWPAN in combination with CoAP allows sensors to be queried from the Internet as
they can provide so-called RESTful web services. Those are services following the Web’s REST
(REpresentational State Transfer) principles [5]. Resources (e.g., sensors) are addressed using
standard URIs and data can be returned in different representations (e.g., HTML or RDF) using
HTTP content negotiation.

RESTful services are queried and manipulated using the aforementioned four HTTP methods.
For instance, an application could query the state of a sensor by sending a GET request to the
sensor (e.g., http://ipv6-address-or-dns-name/room-sensor. The sensor replies with its value
encoded in a, possibly proprietary, encoding (e.g., in plain text: “occupied” or any format the
sensor supports). For an exhaustive discussion of 6LoWPAN, CoAP, and RESTful services, we
refer the reader to [6].

To discover the services hosted on a CoAP server, the CoRE Link Format specification defines
how Web Linking described in RFC5988 is used by CoAP servers. Clients use a well-known URI
(/.well-known/core) to retrieve a list of resources. For instance, the room sensor device could
return </room-sensor>;ct=0;rt=”ex:RoomSensor” to indicate that the resource /room-sensor returns
the content type text/plain (indicated by ct = 0) and that the resource type is ex:RoomSensor. The
latter is a concept from an ontology (e.g., the W3C SSN-XG sensor ontology to which some of
the authors contributed) as described in the following section. Note that concepts appearing in
different ontologies can be automatically mapped1.

RESTful services (i.e., the operations provided, their parameters and return values) can be
described using, for example, Web Service Definition Language (WSDL) version 2.0. For example,
RESTful versions of OGC’s Sensor Observation Services have been proposed and are currently
under consideration by the Sensor Web Enablement group.

3.2 Linked Sensor Data
The integration of sensors into the Internet using CoAP/HTTP already enables many applications
in which developers query and process data provided by a well-known set of sensors. How-
ever, such manual integration does not scale. What is required is a “machine-understandable”
description of sensors and the data they produce. Semantic Web [7] technologies fulfill this
requirement as they enable machines to understand, process, and interlink data using structured
descriptions of resource and Linked Open Data as the framework makes this integration both
immediate and meaningful through the inclusion of semantic links into a resource’s machine-
readable description.

The predominant technique for machine-readable representations of knowledge on the Web is the
Resource Description Framework (RDF), which represents knowledge as (subject, predicate, object)-
triples (e.g., Sensor3 is-in ParkingSpot41 or ParkingSpot41 is-in Berlin). A set of triples forms a graph
where subjects and objects are vertices and predicates are edges. From the graph formed by
these two triples, one can infer that Sensor3 is in Berlin by exploiting the knowledge (contained
in so-called ontologies) that is-in is a transitive property. Such knowledge is often expressed
using OWL (Web Ontology Language), one of the main languages (with RDF Schema) to define
ontologies on the Web.

1. http://www.w3.org/DesignIssues/RDF-XML
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It is imperative to use non-ambiguous identifiers for subjects, predicates, and objects to guar-
antee uniqueness on an Internet-scale, which is achieved by encoding them as URIs. The above
triple could be expressed as follows:

• a subject (<http://example.com/sensors/sensor3>),
• a predicate (<http://www.loa-cnr.it/ontologies/DUL.owl#hasLocation>), and
• an object (<http://example.com/parkingSpot/spot41>).
The Linked Data model does not enforce special URIs but encourages the use of widely-

used URIs so that a densely interlinked graph emerges. Ontologies play an important role in
defining the URIs for a specific application domain and their relation to each other as they
“standardize” agreed, conceptual knowledge. For example, an ontology could define a generic
sensor (e.g., http://purl.oclc.org/NET/ssnx/ssn#Sensor), an occupancy detection sensor (e.g.,
http://example.com/ontology/spitfire.owl#Occupancy), and define that occupancy sensor is a
sub-class of sensor, which creates a relation between the two URIs. Semantic search engines
queried for sensors at a certain location could therefore specifically return information on occu-
pancy detection sensors. The CoAP link-format we use (RFC5988) allows to specify URIs eventually
pointing to semantic definitions, i.e., support for semantic annotation of links inside a sensor
network. Additionally, to make these semantic descriptions available on the Web, we could
imagine to annotate pages describing sensors using RDFa or SA-REST, so that the same document
is used for humans and machines.

3.3 Search for Sensors
Assuming that sensors are described by such RDF triples, a search service can find sensors based
on meta-data such as sensor type, location, or accuracy. For instance, applications could ask for
parking spots in Berlin to calculate the city’s availability of car parking places. Such queries
can be expressed in SPARQL and the aforementioned question could be answered using the
(simplified) SPARQL query in Figure 1. In the query, question marks indicate variables (e.g.,
“node” and “spot”), while “spots” is an aggregate value.

1 SELECT COUNT(DISTINCT ?node) as ?spots

2 WHERE {

3 ?node a ssn:Sensor ;

4 ssn:observes ex:Occupancy ;

5 dul:hasLocation ?spot .

6 ?spot a ex:ParkingSpot ;

7 dul:hasLocation dbpedia:Berlin .

8 }

Fig. 1. SPARQL query requesting all occupancy sensors located at parking spots in Berlin.

The variables in a SPARQL query are matched against triples in databases (triple stores) and
are bound to the matching fields in the matching triples. That is, the query finds subjects that
are sensors observing occupancy that are located in a spot that is a parking spot located in
Berlin. There are a number of existing efforts to support semantic sensor discovery but they are
not as comprehensive as in SPITFIRE. E.g., [8] does not expose Linked Data and [9] does not
exploit the hierarchical and structured relations which are relevant even for such simple queries
as above. To further exploit these annotations, we could also use faceted browsers such as MIT
Simile’s Exhibit, where facets for identifying parking places could be location, availability, but
also static information such as price-range
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4 FROM SEMANTIC SENSOR WEB TO SEMANTIC WEB OF THINGS

The techniques for integration of sensors into the Web outlined in the previous section are nec-
essary, but not sufficient to realize a Semantic Web of Things. In particular, semantic descriptions
must be integrated with the LOD cloud to support semantic reasoning; semantic descriptions
need to be semi-automatically created for sensors and things to allow end-users to use this
technology at scale; abstractions for things, their high-level states, and integration with sensors
are required; and search for things with a given current state is needed. In this section, we show
how SPITFIRE addresses these requirements.

4.1 Advanced Semantics of Sensors
Our main contribution in semantics for sensors over projects such as SENSEI and SemSor-
Grid4Env are:

• scalability through avoiding any registry of semantic entities;
• linkage with the LOD cloud is not restricted to a predefined set of datasets (as in Kno.e.sis’

Real Time Feature Streams and DERI’s SensorMasher);
• generation of semantic annotations from raw data (as in SENSEI) but improved by searching

for already existing concepts to reuse and datasets to link to.
To facilitate this, we developed an ontology starting from the alignment (i.e., mapping equiva-

lent concepts in different ontologies such as room and chamber) of the already existing ontologies
such as Dolce Ultralite, the W3C Semantic Sensor Network (SSN-XG) ontology (based on OGC’s
Observations & Measurements and Sensor Model Language), and the Event Model F, to support
cross-domain descriptions of sensor-related data and its context (higher-level events).

As an example, Figure 2 presents part of an RDF description of an occupancy detection
sensor located in a parking spot. The triples state that a particular object is a sensor measuring
occupancy located in a particular parking spot. The parking spot belongs to a specific company
and is located in a given area with a given geographical location (triples following a semicolon
have only a predicate and object – the subject is the same as in the previous triple). This shows
how a sensor could provide an unambiguous machine-understandable self-description.

1 <http://sensorportal.tu-braunschweig.de/ontology/spitfire.owl#sensor1>

2 rdf:type ssn:Sensor ;

3 ssn:observes ex:Occupancy ;

4 dul:hasLocation <http://sensorportal.tu-braunschweig.de/parkingSpot/ACMEParkingPlace1> .

5

6 <http://sensorportal.tu-braunschweig.de/parkingSpot/ACMEParkingPlace1>

7 rdf:type ex:parkingSpot ;

8 dul:isPartOf <http://sensorportal.tu-braunschweig.de/building/plan/companyPlan1> ;

9 geo:lat "51" ;

10 geo:long "0.4" ;

11 dul:hasLocation <http://sensorportal.tu-braunschweig.de/parkingArea/area10> ;

12 ssn:attachedSystem <http://sensorportal.tu-braunschweig.de/ontology/spitfire.owl#sensor1> .

Fig. 2. Exemplary description of a parking spot occupancy detection sensor.

SPARQL can be used for search on top of such descriptions but cannot be used for sensor
output directly as this would require that new triples are stored and indexed by a triple store
whenever the output of a sensor changes. However, SPARQL compatible support for this is
under active development in SPITFIRE (Continuous Query Evaluation over Linked Streams –
CQELS).

A very important feature of our approach is that arbitrary datasets on the LOD can be
dynamically linked in order to describe complex real-world processes and to detect facts and
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correlations about them. For instance, the above parking spot sensors indirectly also provide in-
formation about environmental pollution caused by cars, which can be integrated with additional
environmental features from http://linkedgeodata.org/, and abnormally high death rates of
local population from http://www4.wiwiss.fu-berlin.de/eurostat/. All publications about such
features can be selected from http://eprints.rkbexplorer.com/. Specific information for certain
countries such as the UK is also available on the LOD from http://education.data.gov.uk.

4.2 Semi-Automatic Creation of Semantic Sensor Descriptions
Besides a language for semantically describing sensors and their output, as well as their embed-
ding into the real world, a mechanism to annotate newly deployed sensors with descriptions
in this language is required. The technically simplest way is to let humans provide these but
this approach does not scale as end-users typically cannot be expected to provide such semantic
descriptions of sensors and their deployment contexts. Therefore, we developed a semi-automatic
approach for annotating newly deployed sensors under the hypothesis that sensors with similar
semantic descriptions would produce similar output. For example, two motion sensors deployed
in the same room should produce similar time series. Assume that one sensor is manually
annotated with its room number and later, a second sensor is deployed in the same room. If the
output of this sensor correlates over some time with the first sensor, we can conclude that they
are in the same location and copy the annotation. Based on the strength of the correlation we
can compute the confidence of the correctness of the inferred annotation. If there is no sensor
with a strong correlation, then the user must provide the annotation manually. If there is one
sensor with a strong correlation, the user must confirm the use of this annotation. If there are
multiple sensors with different annotations but similar correlation strength, then user must chose
among those (assuming that users have access to a computer with appropriate user interfaces).
That is, initially users must provide the annotations manually to bootstrap the system. Over
time, more and more sensors are annotated, increasing the chances of our algorithm correctly
annotating new sensors. Specifically, if multiple sensors with the same annotation but slightly
different output time series exist, a voting mechanism may improve the confidence.

The underlying scientific problem is the classification of sensor data streams, which can be
solved by means of data clustering as illustrated in Figure 3. Sensors with the same known
annotation form a cluster. When a new sensor with unknown annotation appears, we compute
a distance measure to all known clusters, assume the new sensor belongs to the closest cluster
and copy the cluster annotation to the new sensor. However, if the distance to the closest cluster
is too large or if there is a tie between multiple clusters, the user is involved as described above.
The distance between two sensors is computed by filtering and normalizing the raw sensor
output over a given time window, and by computing a distance metric between pairs of sensors.
Currently, we use a fuzzy approach for the distance computation, where an output time series
of a reference sensor is mapped to fuzzy sets, and the output time series of a newly deployed
sensor is matched against those fuzzy sets to compute a similarity score. This algorithm does
not only take into account the possible sensor output values, but their distribution over time.
This approach can not only successfully classify sensors according to their type (i.e., measured
physical quantity), but also according to different measurement units for the same physical
quantity (e.g., degrees Celsius vs. degrees Fahrenheit), and according to location (e.g., room
where sensors are located).

4.3 Semantic Entities: An Abstraction for Things
As motivated in Section 2, users are interested in real-world entities and their high-level states
rather than in raw sensor output. We propose semantic entities as a concept to map sensors and
their raw output to real-world entities with high-level states. That is, semantic entities provide
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Fig. 3. Clusters of annotated sensors and automatic inference of the annotation of a new sensor.

two orthogonal functions: mapping sensors to real-world entities and computing high-level states
from raw output of one or more of those sensors.

This mapping is accomplished using SPARQL queries. For example, to construct a semantic
entity for a parking spot, one would query for sensors (e.g., magnetometers to detect the presence
of metal) located at this parking spot. Additionally, the output of these sensors has to be mapped
to the high-level states “occupied” or “free.” For that, we assume the existence of a RESTful Web
Service that computes the high-level state from raw sensor output. We call such a Web Service a
virtual sensor. Using a PUT operation, the virtual sensor can be configured to accept input from
the previously found real sensors and the computed high-level state can be retrieved by a GET
operation from the virtual sensor in the same way as retrieving the output of a real sensor.

The newly created semantic entity is represented by a set of RDF triples describing its type and
location, as well a providing pointers to the virtual sensor(s) computing its high-level state(s).
Those virtual sensors in turn are also described by RDF triples so that they can be found by
SPARQL queries.

Initially, virtual sensors have to be implemented manually, but over time a large set of reusable
virtual sensors for common high-level states will be created and can be reused by posing
SPARQL queries to find them. The virtual sensors either live on physical sensor nodes (avoiding
the transmission of raw sensor time series across the Internet) or on Internet servers (if state
computation exceeds the resources of a sensor node). If the real-world entity being represented
by the semantic entity is covered by multiple sensors in a redundant fashion, the virtual sensor
may also disable redundant sensors to save energy resources.

Figure 4 (i) shows a SPARQL query to find all sensors located at parking spot “ACMEPark-
ingPlace1”. Subfigure (ii) shows the resulting set of RDF triples describing the semantic entity
created for this parking spot. The reference to the newly created virtual occupancy sensor whose
RDF description is shown further below, containing a link back to the semantic entity.

4.4 Searching Things by Their Current States
An important functionality required by the use case sketched in Section 2 is searching for
semantic entities that exhibit a certain high-level state at the time of the query. As the high-
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(i)
1 SELECT DISTINCT ?node
2 WHERE {
3 ?node a ssn:Sensor ;

4 dul:hasLocation ex:ACMEParkingPlace1 .

5 }

(ii)
1 <http://example.org/se/0d59-9f0e-c05c-3bda>

2 rdf:type ex:ParkingSpot ;

3 dul:hasLocation ex:ACMEParkingPlace1 ;

4 ssn:attachedSystem <http://sensorportal.tu-braunschweig.de/ontology/spitfire.owl#sensor1> .

5

6 <http://sensorportal.tu-braunschweig.de/ontology/spitfire.owl#sensor1>

7 rdf:type ssn:Sensor ;

8 ssn:observes se:Occupancy ;

9 dul:isPartOf <http://example.org/se/0d59-9f0e-c05c-3bda> .

Fig. 4. (i) Example SPARQL query to find sensors at a given parking spot. (ii) Example set of RDF
triples describing the semantic entity and its virtual occupancy sensor. The ParkingSpot class is a
sub-class of se:SemanticEntity.

level states typically change very frequently, SPARQL is not directly applicable. Even CoAP’s
observe function to report changes of a resource rather then streaming sensor values would not
help as all sensors in the world would then push updates at high frequencies, which does not
scale to an Internet of Things. Even installing an observation filter such that only values sought
by a query are reported does not help, as then all relevant sensors would have to be tasked for
each one-short query. We address this challenge by developing heuristics to efficiently identify
entities that are likely to match a given search. Only for those likely candidates, we retrieve their
actual current state to check if they match [10].

We employ prediction models to compute the probability that the current high-level state of
a semantic entity matches the value we are searching for (e.g., parking spots that are empty).
These prediction models are created by the virtual sensors (this is especially efficient if the
virtual sensor lives on the physical sensor node that generates the input sensor data for the
virtual sensor) and are periodically indexed by a search engine. When a search is performed, the
search engine executes the indexed prediction models to obtain the matching probability without
communicating with the virtual sensor. The semantic entities are then sorted by decreasing
probability and contacted in this order to fetch their actual current state until enough matching
entities have been found. We integrate this approach into SPARQL by encoding the prediction
models as RDF triples and evaluating them in the SPARQL query. Using the ORDER BY clause,
entities are then sorted by decreasing probability.

We employ different types of prediction models. The first type of model exploits periodic
patterns in past states (e.g., a meeting room is occupied every Monday from 8 to 10). A second
type of model exploits correlations of sensors (e.g., parking spots close to the entrance of a
building are often all occupied, whereas spots further away are often free), so by knowing the
occupancy of a parking spot one can infer the state of a neighboring parking spot with high
probability. The prediction models we consider are based on simple statistics and computational
overhead for creating and executing them is small.

Figure 5 (i) shows an extended version of the occupancy virtual sensor entity of Figure 4
(ii), encoding a very simple prediction model (i.e., the spot was occupied with probability 0.2
and free with probability 0.8 in the past). The SPARQL query in Subfigure (ii) returns a list of
parking-spot semantic entities sorted by decreasing probability of being free according to the
above prediction model.
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(i)
1 <http://sensorportal.tu-braunschweig.de/ontology/spitfire.owl#sensor1>

2 rdf:type ssn:Sensor ;

3 ssn:observes se:Occupancy

4 dul:isPartOf <http://example.org/se/0d59-9f0e-c05c-3bda> ;

5 ex:FreeStateHasProbability "0.8" ;

6 ex:OccupiedStateHasProbability "0.2" .

(ii)
1 SELECT DISTINCT ?entity

2 WHERE {

3 ?entity a ex:ParkingSpot ;

4 ssn:attachedSystem ?node .

5 ?node a ssn:Sensor ;

6 ex:FreeStateHasProbability ?prob .

7 } ORDER BY ?prob

Fig. 5. (i) RDF encoding of a simple prediction model for a virtual sensor. (ii) SPARQL query to
compute a ranked list of parking-spot semantic entities.
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1. Request sensor meta data

2. Reply sensor meta data

5. Execute SPARQL query
6. Return list of matching semantic entities

Backend

Frontend

Sensor Network

REST-Interface

Web Sensor

Fig. 6. Architecture of the reference implementation.

5 REFERENCE IMPLEMENTATION

To demonstrate the feasibility of the proposed architecture, we realized a prototype using the
Jena Semantic Web Framework. Figure 6 shows an overview of the architecture along with the
steps involved in performing a search operation.

An RDF triple store (i.e., a distributed or grid/cloud-based database storing RDF triples)
forms the core of the system. A crawler periodically scans the Semantic Web of Things for
semantic entities and sensors, downloads meta-data and prediction models using their RESTful
web interfaces, converts this information into RDF triples (if necessary) and stores them in the
triple store. iSense sensor nodes equipped with motion and temperature sensors are deployed in
our office building experiment. Their raw output is converted into a high-level state reflecting
room occupancy by a virtual sensor. The sensor nodes run 6LoWPAN/IPv6 on the network
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layer and an implementation of the current IETF CoAP Draft on the transport layer to provide
a RESTful interface to the outside world. A proxy translates between CoAP/UDP-based service
invocations and RESTful HTTP Web Service calls that are being issued by the crawler or arbitrary
client applications. In addition to physical sensors, our system supports so-called web sensors,
i.e., sensors whose output is published on Web pages that are parsed by the crawler to extract
sensor values. In particular, we are using a city-wide online parking web application to obtain
real-time information about parking lot occupancy throughout the city.

Semantic data stored in the triple store can be queried using a SPARQL query engine. Our
aim is to also support non-expert users who would be unable to formulate SPARQL queries.
We therefore offer a simple graphical user front end which accepts a keyword-based query and
converts it into a SPARQL query at the cost of reduced query expressiveness. A map-based
interface shows locations of the matching semantic entities.

The system prototype is operational and implements the use case described in Section 2.
The system accesses about 40 physical sensors (temperature, movement detectors) attached to
20 sensors nodes in our office building, as well as 25 web sensors (parking lot occupancy). We
have also studied the efficiency of the underlying content-based search algorithm in [10], showing
that the communication overhead is reduced by up to one order of magnitude compared to a
pull-based baseline.

Future steps include (distributed / grid / cloud-based) triplestore scalability for sensor data,
which uses domain knowledge about the stored triples and specialized data placement policies
to optimally distribute triples. Also, we are working on supporting better reasoning by making
use of LOD ontologies in queries. Finally, we are currently working on integrating a service
for semi-automatic sensor annotation into the system. The reference implementation will be
provided at http://spitfire-project.eu.

6 CONCLUSIONS

Existing Semantic Sensor Web technologies enable the integration of sensors into the Web, but
the underlying model is focused on sensors rather than on things and their high-level states.
Existing approaches also lack integration with the LOD cloud, a quickly growing and open base
of semantic world knowledge. With SPITFIRE, we work towards a Semantic Web of Things, by
providing abstractions for things, fundamental services for search and annotation, as well as by
integrating sensors and things into the LOD cloud. Using Linked Data principles makes sensor
data easily accessible for applications via existing mechanisms deployed on the Web, which will
significantly speed up the uptake of IoT technologies. We demonstrated the feasibility by an
operational prototype that was used to realize a representative use case. As SPITFIRE is in line
with the most promising developments on both the IoT and Web sides, the system will benefit
from any advances made in these areas implicitly.

As it was difficult to foresee the wealth of current Web applications back when the Web was
created, we have to wait and see how people will use the Semantic Web of Things. It is also
hard to predict if a Semantic Web of Things will be as broadly adopted as the Web is today.
One indicator is that LOD has already achieved significant uptake by governments (including
UK, USA), the media sector (BBC), life sciences, geo information systems, and Web companies
(Freebase). Making sensor data part of this data pool is clearly beneficial as then integration
with knowledge from arbitrary sources is possible. For example, sensors and their data can be
linked to geographic data (correlated natural phenomena), user-generated data (social feedback),
government data (census information), life-science data (causes and effects of diseases), etc.

A strong indicator whether this line of development will be successful in the long run, is
also provided by the exponentially growing amount of linked data and the support by major
players. Since its beginnings in 2007, the LOD cloud has grown from 12 datasets to 203 data sets
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in 2010 with over 25 billion triples interlinked with 395 million links. Industry initiatives such as
Google’s Rich Snippet (2009), Facebook’s Open Graph (2010), or very recently Schema.org (2011)
all aim at adding semantic markups to web pages to improve search and discovery capabilities
for the end user also confirm this uptake at Web-scale.
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