
Middleware for Smart Gateways
Connecting Sensornets to the Internet

Daniel Bimschas
Institute of Telematics,

University of
Lübeck, Germany

bimschas@itm.uni-
luebeck.de

Horst Hellbrück
CoSA Research Group,

University of Applied Sciences
Lübeck, Germany
hellbrueck@fh-

luebeck.de

Richard Mietz
Institute of Computer

Engineering, University of
Lübeck, Germany

mietz@iti.uni-luebeck.de

Dennis Pfisterer
Institute of Telematics,

University of
Lübeck, Germany

pfisterer@itm.uni-
luebeck.de

Kay Römer
Institute of Computer

Engineering, University of
Lübeck, Germany
roemer@iti.uni-

luebeck.de

Torsten Teubler
CoSA Research Group,

University of Applied Sciences
Lübeck, Germany

teubler@fh-luebeck.de

ABSTRACT
There is an increasing trend to integrate sensor networks into
the Internet, eventually resulting in an Internet of Things.
Recent efforts of porting IPv6 to sensor networks turn sensor
nodes into equitable Internet peers and RESTful Web Ser-
vices on sensor nodes allow a distribution of the application
logic among sensor nodes and more powerful Internet nodes.
The touching point between a sensor network and the Inter-
net is the gateway which translates between the link-layer
protocols used in the Internet (Ethernet, Wi-Fi) and sensor
networks (IEEE 802.15.4). So far, the functionality of those
gateways was fixed and simple. We propose to turn these
gateways into smart gateways by enabling them to execute
application code. As only the gateway has full knowledge of
and control over both the sensor network and the Internet,
smart gateways can act as performance-enhancing proxies
and intelligent caches to preserve the limited resources of
the sensor network. Also, the smart gateway can perform
application-specific protocol conversion between highly op-
timized but non-standard protocols in the sensor network
and standardized, but less efficient protocols in the Inter-
net. In this paper we present the design of a middleware
for smart gateways that allows the execution of application
code on the gateway by offering simplified interfaces to the
sensor network and the Internet. We also report preliminary
performance results for key functions of the middleware.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process, Information filter-
ing ; C.2.4 [Computer-communication Networks]: Dis-

c©ACM, 2010. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in MidSens ’10 Pro-
ceedings of the 5th International Workshop on Middleware Tools, Ser-
vices and Run-Time Support for Sensor Networks, (November 2010)
http://dx.doi.org/10.1145/1890784.1890787

tributed Systems—Distributed applications; C.3 [Special-
purpose and Application-based Systems]: Real-time
and embedded systems

General Terms
Design, Performance, Reliability

Keywords
Wireless Sensor Networks, Future Internet, Integration,
Search

1. INTRODUCTION
There is an increasing trend to integrate sensor networks
with the Internet. The term Internet of Things has been
coined to express the vision of augmenting real-world ob-
jects, places, and people with sensors, actuators, and mi-
crocontrollers and to connect them to the Internet via wire-
less communication. Essentially, the Internet of Things of-
fers online access to and control over the state of the real
world. One indicator for this ongoing integration of sen-
sor networks and the Internet is the recent trend of porting
IPv6 to sensor networks by means of the 6LoWPAN [10]
adaptation layer and by using routing protocols such as
RPL [14] that have been specifically optimized for resource-
constrained and lossy networks. The touching point between
a sensor network and the Internet is a so-called gateway: a
computer with two network interfaces that translates be-
tween link layer protocols used in the Internet such as Eth-
ernet or Wi-Fi on the one hand, and link layer protocols
used in sensor networks such as 802.15.4 on the other hand.

Applications in the Internet of Things are typically dis-
tributed over sensor nodes (e.g., data collection, pre-
processing, and aggregation) and more powerful Internet
nodes (e.g., complex data analysis and decision making).
Hence, application-level protocols are also needed that span
sensor networks and the Internet to integrate the distributed
application logic. A recent trend here is the use of light-
weight Web Services based on the REST principle [7] on top
of HTTP. The term REST stands for Representational State



Transfer. RESTful architectures use the central abstraction
of a resource (e.g. aggregated sensor data or a sensor on a
sensor node). Resources can have arbitrary representations,
e.g. XML, JSON or an application specific binary represen-
tation. Every resource is addressed by a URI and can be
manipulated (i.e. have its state transferred) using the well-
known HTTP request methods such as GET, POST, PUT,
DELETE to retrieve, update, create or delete it. Sensor
nodes then would directly support these light-weight Web
Service protocols, thereby allowing the application to easily
span over the sensor network and the Internet.

We propose to extend this model by allowing the execution
of application-specific code on the gateway, such that parts
of the application logic execute on sensor nodes, parts on
the gateway, and parts on powerful Internet nodes. This
proposal is in contrast to the current understanding of a
gateway, which is usually responsible for a fixed set of jobs
such as to monitor traffic, firewalling, access control and
security applications.

This proposal is motivated by the fact that the gateway is in
the unique position to participate both in the sensor network
and in the Internet, that is, application logic executing on
the gateway can exploit knowledge of and information col-
lected from those two networks. Application logic executing
on sensor nodes or on Internet nodes does not have access
to this combined information.

More concretely, the application code on the gateway can
contribute to saving resources in the sensor network. One
way to achieve this is by means of protocol conversion.
Instead of supporting costly HTTP and REST on sensor
nodes, a more efficient protocol such as the Constrained Ap-
plication Protocol (CoAP) [11] could be used in the sensor
network and the gateway would translate between CoAP
on the sensor network side and HTTP+REST on the Inter-
net side. Protocols such as CoAP are currently not yet fully
standardized and drafts change frequently. Being able to de-
ploy application-specific code on the gateway, one can easily
change the protocol in the sensor network without affecting
the interface offered to the Internet. Further, the gateway
can act as a performance-enhancing proxy (PEP) by answer-
ing application requests to the sensor network without com-
munication with the sensor network. By overhearing broad-
cast messages in the sensor network, the PEP could learn
the state of the sensor network in an application-specific way
and answer requests from Internet nodes without additional
communication with sensor nodes. Finally, the combined
information available at the gateway is often helpful in de-
bugging.

To facilitate the development of application code for the
gateway, we develop a middleware that offers simplified in-
terfaces to the two networks connecting to the gateway. The
architecture of this middleware and its individual compo-
nents are described in the subsequent section. After that
follows a preliminary evaluation of key functions of the mid-
dleware.

2. DESIGN
Figure 1 depicts the network architecture and the compo-
sition of the smart gateway middleware. Let us first fo-

cus on the network architecture. Sensor networks connect
through a smart gateway to the Internet and there is one
smart gateway for each sensor network. However, besides
those wireless sensors, many sensors such as Webcams are
directly connected to Internet nodes already today. Our
goal is to offer a consistent interface to these two classes of
sensors. Hence, we provide so-called virtual sensor nodes
that mimic real sensor nodes to which individual sensors
are attached. Those virtual sensor nodes are “connected” to
the Internet through a smart gateway that is very similar
to the smart gateway connecting real sensor nodes. Both
smart gateways offer the same interface to application code
executing on the gateway.

Let us now focus on the software architecture of the mid-
dleware running on the smart gateways. At the very base
of the middleware is a Layer-2 gateway interconnecting
IPv6/6LoWPAN-based sensor networks and the IPv6-based
Internet, which we call Forward-Sensor. We have imple-
mented this Layer-2 gateway as a virtual network card run-
ning on standard-PCs using the Virtual Tunnel [9] frame-
work that provides so-called TUN (network-layer) and TAP
(Ethernet-layer) interfaces, which give user-space access to
received IP-packets and Ethernet frames and allow sending
fabricated ones. On top of this virtual network card sits a
user-space TCP/IP (version 4 and 6) communication stack
called EZnet [13] which is implemented in Java. The stack
is configurable in the sense that different protocol layers can
be selected and combined. EZnet parses incoming packets
on every protocol layer, passing it as structured object to the
application, such that the application logic has full access to
information from and full control over all networking layers.
Finally, EZnet interfaces to the application code executing
on the smart gateway through a well-defined application in-
terface.

The basic operation of this application interface is as follows.
All incoming packets (either from the sensor network or the
Internet) are parsed by EZnet providing details from the in-
dividual protocols and passed to the application code. The
application code can then inspect the packet and its headers
and meta data and decide what to do. There are basically
four actions possible: discarding the packet – possibly af-
ter extracting and storing some of the information from the
packet; forwarding the packet unchanged or with changed
headers to the original or a different destination; translating
the packet into a different protocol and then sending the
translated packet; or replying to the sender of the packet,
e.g., using cached information. The application logic may
also generate and send a message without an incoming mes-
sage, for example, to maintain cached information up-to-
date. In the remainder of this section we describe the indi-
vidual components of our architecture.

2.1 Layer-2: Forward-Sensor
The primary task of the Forward-Sensor component (see
Figure 1) is to interconnect the Internet and the Wireless
Sensor Network. Therefore it works as a protocol translator
between Ethernet and vendor specific wire formats, depend-
ing on the sensor node hardware in use. A typical use-case
is that a gateway sensor node is connected to a PC via USB.
This layer-2 functionality is implemented as a virtual net-
work card running on standard-PCs using the Virtual Tun-



���

����������	

���������	
���

API

EZnet
��

� Dynamic
Web Content

��������

����������	

���������	
���

API

EZnet

��
���

�


�����������
���������	
��� Web Content


�����������
���������	
���

Figure 1: Overview of the proposed architecture

nel framework that provides so-called TUN (network-layer)
and TAP (Ethernet-layer) interfaces. In addition to this
well-known protocol translation functionality we’ve built ex-
tra functionality that allows us to intercept incoming/out-
going Ethernet frames and IP-packets from and inject fab-
ricated ones into the communication stream between sensor
network and the Internet through a standardized interface.

The Forward-Sensor component therefore interacts with the
sensor node and creates a virtual network card on a stan-
dard PC to receive IPv4/IPv6 packets destined for the sensor
network. It passes both the data received from the sensor
network and that received on the virtual interface to an ar-
bitrary application (such as our EZnet Stack). In addition,
it accepts data from such an application and transmits is ei-
ther to the attached sensor node or passes it to the operating
system for routing towards the Internet.

Applications running on top may perform arbitrarily com-
plex tasks ranging from simple traffic filtering (i.e. firewall
functionality), to application-level protocol translation or
proxy functionality. Applications receive all traffic as is,
i.e. including frames of all layers up from layer 2 of the net-
working stack, therefore enabling deep packet inspection or
cross-layer protocol translation. In order to support the de-
velopment of those kinds of applications, we have extended
the EZnet protocol stack which runs on top of the Forward-
Sensor component.

2.2 Layer-3 upwards: IPv6 EZnet Stack
Once individual frames are passed from the virtual network
interface mentioned above, further processing is required to
adapt protocols for use in WSNs. Examples are the trans-
lation from IPv6 to 6LoWPAN, HTTP over TCP to HTTP
over UDP, and HTTP over TCP to CoAP. A smart gate-
way performing this translation must therefore be capable
of interacting with peers in the Internet on the same pro-
tocol layer. For instance, in the case of a translation from
HTTP over TCP to CoAP, the gateway must act on behalf of
the sensor node and it must handle the TCP/IP connection
setup, data transmission, and teardown (i.e., accept TCP/IP

connections for the sensor node) as well as the HTTP request
and response cycle. On the other hand, the gateway commu-
nicates with the sensor nodes via CoAP. Apart from being
the communication endpoint for the WSN and the Internet
hosts, it must translate from one protocol to the other also
with respect to the possibly different protocol semantics.

An implication of this is that we cannot use the stan-
dard protocol implementations available in different oper-
ating systems but that some custom implementation is re-
quired. For our implementation of the smart gateway, we
use a user-space Java implementation of TCP/IPv4 called
EZnet, which was proposed by Walther et al. [13]. We
have extended EZnet to support IPv6, TCPv6, and ICMPv6
and to interact with our Forward-Sensor component. The
user-space implementation simplifies development in various
ways. It allows convenient debugging and exception han-
dling and provides fast analysis of errors where a kernel im-
plementation in C/C++ just halts or crashes the kernel on
errors. In addition, any available Java library can be used
in conjunction with EZnet (e.g., HTTP proxies, RESTful
application servers, etc.).

2.3 Virtual Sensor Nodes
Deploying sensor networks to build up the Internet of Things
is a costly and therefore long process. To jump-start the In-
ternet of Things, we should therefore also exploit other types
of sensors that are already deployed. For example, many we-
bcams and weather stations are connected to Internet nodes
and can be accessed through the Web. Often, not the raw
“sensor data” (e.g., image from a Webcam) are interesting,
but derived state such as light intensity or number of people
on an image.

However, access to such dynamic web content is quite differ-
ent from access to sensors attached to real sensor nodes. To
offer a homogeneous interface to all types of sensors, we offer
so-called virtual sensor nodes that mimic real sensor nodes
to which different sensors can be attached. Essentially, a
virtual sensor node is a program executing on an Internet
node reading data from Internet sensors such as a Webcam.



A virtual sensor node could for example poll a Web page
containing an image from a Webcam at regular intervals,
parse the page to extract the raw image, and process the
data to obtain the desired sensor output such as the light
intensity. We provide a software framework that allows to
poll Web pages at configurable intervals and to apply a chain
of filters to the downloaded page to parse it and to process
the raw data in order to obtain a virtual sensor reading. The
details of this framework go beyond the scope of this paper.

Even though virtual sensor nodes are – in contrast to real
sensor nodes – hosted on Internet nodes with plentiful re-
sources and use standard Internet protocols, there are cases
where the functionality of a smart gateway would also be
helpful for virtual sensor nodes. Therefore, we can option-
ally introduce a smart gateway also between virtual sensor
nodes and the rest of the Internet as depicted in Figure 1.
Both, the smart gateway connecting the virtual sensors and
the one for the real sensors, are executing the same mid-
dleware. In particular, the API of the middleware is the
same such that the same application code can execute on
all smart gateways. From the perspective of the application
code, virtual sensor nodes are indistinguishable from real
sensor nodes.

3. APPLICATIONS
In this section we outline three possible applications of our
smart gateway: i) protocol conversion, ii) request caching,
and iii) intelligent caching and discovery.

3.1 Protocol Conversion
When observing the current standardization tracks for
WSNs, a clear trend is that the integration of wireless sensor
nodes and other networks into the Future Internet will use
(or at least resemble) existing, widely deployed technologies
such as TCP/IP and HTTP. Based on these technologies,
the RESTful architecture style [7] provides an excellent ab-
straction of the service paradigm and only uses TCP/IP
and HTTP to implement distributed applications. REST-
ful HTTP-based Web Services have been broadly adopted
in the Internet recently. Compared to other service abstrac-
tions such as SOAP-based Web Services the HTTP-based
RESTful Web Service architecture style is relatively conser-
vative regarding resource consumption in terms of energy
and processing power.

The term REST stands for Representational State Transfer.
The central abstractions in a RESTful architecture are re-
sources. A resource is addressed by a URI and it can be ma-
nipulated (i.e. transfer its state) using the request methods
of the HTTP protocol. The most common operations are i)
GET to read a resource representation, ii) POST to update
it or create a new resource, iii) PUT to update an existing
resource, and iv) DELETE to delete an existing resource.
Furthermore, a resource can have different representations,
e.g. XML, JSON, or some efficient binary format for ma-
chine processing or an HTML representation for humans.
Relations between resources are expressed by simple links.
Applying the RESTful architecture pattern to WSNs, every
node, every sensor on the node, and every service provided
by the node are addressed as a (read-only) REST resource.

Using RESTful Web Services that require HTTP and

TCP/IP inside WSNs however is still suboptimal because
of the resource demands and the connection-oriented nature
of TCP. For both technologies, adaptation layers have been
proposed and are being standardized currently. For instance,
instead of native IPv6, 6LoWPAN can be used inside WSNs
and instead of HTTP the Constrained Application Proto-
col (CoAP, [11]) is a viable option. CoAP adheres to the
RESTful architecture style while catering for the resource
constraints of the WSN.

However, the fundamental nature of WSNs and the In-
ternet is vastly different and inside the WSN, strict re-
source constraints apply. Hence, exchanging data with an
IPv6/6LoWPAN-enabled sensor node requires that the ap-
plication payload is as small as possible to be forwarded,
stored, and processed on sensor nodes. Hence, a client on
the Internet would be forced to use CoAP to interact with
sensor nodes. This is a loss of transparency since different
classes of devices require a different way of interaction. To
alleviate this situation, our smart gateway approach could
transparently perform this adaptation and expose the ser-
vices of CoAP-enabled sensor nodes as standard HTTP-
based RESTful Web Services towards the Internet. We are
currently implementing and evaluating protocol translation
functionality, using the EZnet protocol stack that will map
the protocol semantics between TCP/HTTP and CoAP. By
that, the services provided by the sensor nodes inside the
WSN will be transparently available to every HTTP Client,
including Web browsers.

3.2 Request Caching
Caching aims at reducing response time and resource con-
sumption of the sensor network by means of the smart gate-
way answering a request to the sensor network without ac-
tually communicating with the sensor network by exploiting
the results of previous requests to the sensor network.

In the simplest mode of operation an application caches re-
quests and responses. When new requests arrive, it answers
with cached responses on behalf of real sensor nodes if the
cached information is still valid. An optimization is to ei-
ther request data from the sensor nodes once in a while or
to instruct nodes to send data periodically to update the
cache.

Such a cache application can already improve the integration
of sensor networks in several ways:

• Reduce Response Time: As an agent for sensor
nodes the cache application answers requests imme-
diately instead of forwarding messages to the low-
bandwidth/high-delay sensor network.

• Reduce Load/Traffic in the Sensor Network:
The more messages answered directly by caches the
more the traffic in the sensor network is reduced.

• Increase Life Time of the Sensor Network: Less
messages in the sensor network means less energy con-
sumption leading to improved lifetime of the sensor
nodes and the whole network.

A drawback of simple request caching mechanisms that, e.g.



use time-based cache invalidation, is their potential lack of
accuracy regarding the actual value and the responded value.
To alleviate this drawback, we investigate the use of predic-
tion models, which are described in the next subsection.

3.3 Intelligent Caching and Discovery
Instead of simply repeating the result from the last request,
a more effective and accurate approach is to predict current
sensor values from past values of the same sensor or from
current values of other correlated sensors. The smart proxy
can collect such information by overhearing all reply mes-
sages from the sensor network.

Here, we are interested in a special type of prediction where
not only the current sensor value is predicted, but the proba-
bility distribution of the current sensor output is estimated.
For example, for a binary occupancy sensor the output of the
prediction model could be that the current value is “occu-
pied”with a probability of 0.8 and is“free”with a probability
of 0.2.

The reason for this approach is that it does not only allow
to predict the current value of a sensor (e.g., by using the
value with the highest probability), but it enables an effi-
cient form of sensor discovery, which is the problem of find-
ing sensors that currently output a certain value. Knowing
the probability distributions, we can identify sensors that
currently output a sought value with high probability. By
contacting sensors in the order of decreasing probability to
find out their actual current state, we spend communication
overhead primarily for sensors that are very likely to match.

We are currently exploring the use of correlations between
sensors for prediction. From past observations of a pair of
sensors A and B the smart gateway can compute a correla-
tion function that allows to estimate the current value of B
given the current value of A and vice versa. We are model-
ing the correlations using a linear Bayesian Network (BN),
where each node of the BN represents a sensor with its pos-
sible output values and their probabilities. Whenever the
actual value of a sensor becomes known, this information
is entered into the BN and propagated to the whole net-
work, updating probabilities for each possible output value
at every node.

4. EVALUATION
In this section we will present a first evaluation of our new
architecture and a technique for the intelligent caching mod-
ule.

4.1 Request Caching
We evaluated the performance of our smart gateway with a
simple caching application running on top thus acting like
the performance enhancing proxy (PEP) mentioned in the
introduction. The setup, including the IPv6 addresses used,
is depicted in Figure 2. An IPv6-enabled browser issues
HTTP requests to a sensor node running Contiki OS with
IPv6 support and a web server [4, 5] via a smart gateway.
The application caches HTTP requests and the correspond-
ing HTTP responses that are tagged with expiration date,
so the cache can answer future requests with the cached in-
formation until it expires.

HTTP Proxy

Smart
Gateway

aaaa:11:22ff:fe33:4455
2001:db8::4

2001:db8::1

Browser

Figure 2: The Test Setup for Performance Evalua-
tion.

We measured the time needed to retrieve different amounts
of payload from the sensor node i) with and ii) without the
gateway in between and additionally, we iii) measure the
time for a response when the HTTP proxy sends the cached
information without interacting with the sensor network. In
this setup we take into account the best case where the infor-
mation is requested from a sensor node within the one-hop
range of the gateway. However, in a large-scale WSN there
will be multi-hop connections to the desired node resulting
in even longer response times and higher amount of messages
to be sent.

The results can be seen in Figure 3. The direct request
from the sensor node required less than 2sec in average.
If we add the gateway in between, the request time goes
up to 5sec and even more for larger payloads. It seems
that is due to a problem between the used network device
driver or firmware for the wireless connection and libpcap
which EZnet is connected to. We expect that if this issue is
resolved, the time is approximately the same as before. If a
cached result is used, the time required is less than 0.25sec
showing that the parsing performance of our smart gateway
is good.

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

D
ow

nl
oa

d 
T

im
e 

[s
]

Size of Transferred Document [Bytes]

Direct with PEP
Direct without PEP

PEP Cached

Figure 3: PEP Time Measurement

4.2 Intelligent Discovery
In addition to simple caching, we investigate the effective-
ness of intelligent discovery using a prediction model that
exploits correlations between the outputs of sensors as de-
scribed in Section 3.3.



As a data set we are using traces from sensors in the stations
of the Bicing [3] bicycle rental system in Barcelona. Each
of the 384 sensors outputs the current number of available
bicycles at each of the rental stations over a period of three
months. The values of those sensors are published in real-
time on a Web page. Using virtual sensor nodes, sensors can
be integrated into an Internet of Things.

For the evaluation we sought to discover 10 sensors currently
reading a certain number of available bicycles. Using the
prediction model, the smart gateway picks the sensor with
the highest probability of currently reading the sought value.
A message is sent to that sensor to find out its actual current
value. This actual value is then entered into the BN and
propagated through the network to update the predicted
probabilities. Then again the not-yet-contacted sensor with
the highest probability is sent a message to request its value
and the BN is updated and so on until 10 matching sensors
have been found or all sensors have been contacted.

We repeat this discovery at different times and compute
the average number of sensors that need to be contacted
to find 10 matches. We compared this with a naive ap-
proach, where the smart gateway would contact sensors in
random order until enough matches have been found. The
results are shown in Figure 4. On the left hand side, the
results of the individual discovery operations are shown, the
right-hand side shows box plots with median, first and third
quartiles and min/max values. We can clearly see that the
prediction model is effective as it approximately halves the
number of messages and also has a lower variance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  200  400  600  800  1000

N
u
m

b
e
r 

o
f 

co
n
ta

ct
e
d

 s
e
n
so

rs

Random
Bayesian

0

25

50

75

100

...
384

Random Bayesian

N
u
m

b
e
r 

o
f 

co
n
ta

ct
e
d

 s
e
n
so

rs

optimum

Figure 4: Number of sensor contacted when using
Random and Bayesian search.

5. RELATED WORK
The overall goal of our research is the seamless integration of
(wireless) sensor networks into the Future Internet. By that,
we explicitly also focus on higher level integration beyond
MAC- or IP-based connectivity.

There has been a lot of research regarding IP connectivity for
resource constrained devices that lead to standardization of
protocols such RFC 4944 [10], better known as 6LoWPAN,
that made the utilization of IPv6 in sensor networks feasible.

[2] gives a good overview on research in this field in the last
years.

Looking at the question of how to integrate the actual data
delivered by WSNs into applications in the Future Internet
it is easy to argument that a service abstraction, built on
standardized protocols, can help managing the complexities
and constraints of the scenario. There has been a lot re-
search recently on how to make the currently most popular
service middlewares feasible for usage in WSN.

Dogan Yazar and Adam Dunkels try to employ stan-
dard compliant RESTful HTTP Web Services inside the
WSN [15]. For improved performance of the underlying
TCP connection they adapt the duty-cycling of the MAC-
layer protocol to adhere to the session and reliable trans-
port semantics to stay awake for the whole TCP Session.
Furthermore, they use the Conditional HTTP GET mech-
anism to transport only response payload if the ressource
has changed since the last request to improve energy effi-
ciency. Glombitza et al. employ SOAP-based Web Services
inside the WSN by using the Lean Transport Protocol [8],
an efficient Web Service transport protocol explicitly tar-
geting resource constrained devices. The Internet Engineer-
ing Task Force (IETF) has recently started a new working
group by the name of Constrained RESTful environments
(CoRE) which is currently working on the Constrained Ap-
plication Protocol (CoAP) [11] that can be used as a mid-
dleware to implement RESTful Web Services, based on a
compressed subset of HTTP methods and headers, thereby
further optimizing payload size. CoAP also tries to imple-
ment transport guarantees to make the use of TCP obsolete
inside the WSN. In comparison to the aforementioned ap-
proaches we try to exploit unused potentials by optimizing
the glue line (e.g. the gateway) between the WSN and the
Internet. Our goal is to further enhance the overall system
efficiency by bridging the gap between the partially con-
tradictory resource requirements and constraints of WSNs
and the Internet. Please note that our approach is easily
transferable to other middlewares such as SOAP-based Web
Services.

The SENSEI EU-FP7 project [12] proposes an architec-
ture that represents sensor nodes as semantic annotated re-
sources that provide services. SENSEI provides means to
search and to semantically query for sensor nodes and their
data. It makes no assumption about how the services of the
sensor nodes are actually provided and is by that compatible
with various solutions, such as our RESTful service oriented
approach that is transparently performance enhanced.

Sensor Ranking [6] sorts sensors according to the probabil-
ity that they fulfill a given query. By examining historic
data of the sensors for periodicity of measured values, pre-
diction models are generated which try to foresee the cur-
rently measured value. The sensors are then contacted in
order of decreasing probability. This can eventually reduce
the total number of messages needed to find enough sensors
that fulfill the given query. Our approach additionally tries
to take potential correlations between sensor measurements
into account. This allows us to use existing knowledge about
sensor output of a node A at a given point in time to im-
prove prediction of the sensor output of a node B if they are



correlated.

Global Sensor Networks (GSN) [1] is a middleware that ab-
stracts from the underlying, heterogeneous sensor network
technologies, provides efficient distributed query processing
and combination of sensor data and dynamic deployment of
new sensor nodes and networks. The middleware is data-
oriented, providing means to gather, analyze and publish
data from sensor networks. Sensor nodes are connected to
the GSN via a GSN-specific wrapper. In contrast to GSN
our focus lies more on deploying non-proprietary and Inter-
net standards-based middleware such as RESTful Web Ser-
vices in an efficient manner. This will eventually allow us
to use existing data acquisition and mining software built
upon standard Internet protocols, alleviating the need for
custom-tailored solutions that explicitly target sensor net-
works. Please also note that by implementing a RESTful
HTTP Web Services wrapper for GSN, networks based on
our architecture could easily join the GSN network.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced our smart gateway archi-
tecture for an integration of WSNs into the Internet. The
key idea is to turn the formerly simple protocol translators
to smart gateways. These exploit their full knowledge of both
the sensor network and the Internet to preserve the limited
resources of the sensor network. We presented three differ-
ent applications running on top of our smart gateway: proto-
col translation, request caching, and intelligent caching with
sensor discovery. We have evaluated our approach and pre-
sented first promising evaluation results showing that smart
gateways can speed up response times, reduce the number of
messages sent inside the WSN, and thus prolong the lifetime
of the WSN.

Future work will include more applications on top, perfor-
mance optimizations, in-depth evaluations, and integration
into our outdoor testbed. Furthermore, we will create new
and improve existing prediction techniques for the prediction
module. In the end we will build a search engine with dif-
ferent testbeds and virtual sensors connected to proof that
our approach is feasible.

7. ACKNOWLEDGMENTS
This work was funded by the Federal Ministry of Edu-
cation and Research of the Federal Republic of Germany
(Förderkennzeichen 01BK0905, GLab). The authors alone
are responsible for the content of the paper.

8. REFERENCES
[1] K. Aberer, M. Hauswirth, and A. Salehi.

Infrastructure for data processing in large-scale
interconnected sensor networks. In Proceedings of the
Mobile Data Management (MDM 2007), Mannheim,
Germany, 2007. IEEE Computer Society.

[2] P. A. C. da Silva Neves and J. J. P. C. Rodrigues.
Internet protocol over wireless sensor networks, from
myth to reality. Journal of Communications, 5(3),
2010.

[3] B. de Serveis Municipals. Bicing, 2009.
http://www.bicing.cat/.

[4] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors
(Emnets-I), Tampa, Florida, USA, NOV 2004.

[5] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn,
B. Leverett, E. Gnoske, M. Vidales, G. Mulligan,
N. Tsiftes, N. Finne, and A. Dunkels. Making sensor
networks ipv6 ready. In Proceedings of the Sixth ACM
Conference on Networked Embedded Sensor Systems
(ACM SenSys 2008), poster session, Raleigh, North
Carolina, USA, NOV 2008. Best poster award.

[6] B. M. Elahi, K. Romer, B. Ostermaier, M. Fahrmair,
and W. Kellerer. Sensor ranking: A primitive for
efficient content-based sensor search. In IPSN ’09:
Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, pages
217–228, Washington, DC, USA, 2009. IEEE
Computer Society.

[7] R. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[8] N. Glombitza, D. Pfisterer, and S. Fischer. Ltp: An
efficient web service transport protocol for resource
constrained devices. In Seventh Annual IEEE
Communications Society Conference on Sensor, Mesh,
and Ad Hoc Communications and Networks (IEEE
SECON’ 10), 2010.

[9] M. Krasnyansky. VTUN – Virtual Tunnel, 2010.
http://vtun.sourceforge.net/.

[10] G. Montenegro, N. Kushalnagar, J. Hui, and
D. Culler. Transmission of IPv6 Packets over IEEE
802.15.4 Networks. RFC 4944 (Proposed Standard),
September 2007.

[11] Z. Shelby, B. Frank, and D. Sturek. Constrained
application protocol (coap). An online version is
available at http:
//www.ietf.org/id/draft-ietf-core-coap-01.txt
(08.07.2010), jul 2010. Expires: January 9, 2011.

[12] The SENSEI project. The SENSEI real world internet
architecture. An online version is available at
http://www.sensei-project.eu/index.php?option=
com_docman&task=doc_download&gid=83&Itemid=49
(13.08.2010).

[13] U. Walther and S. Fischer. EZnet: A Framework for
Rapid Protocol Protyping. In IEEE International
Conference on Networking (ICN 2002), Atlanta, USA,
aug 2002.

[14] T. Winter, P. Thubert, and the ROLL Team. Rpl:
Ipv6 routing protocol for low power and lossy
networks. An online version is available at http:
//tools.ietf.org/html/draft-ietf-roll-rpl-11
(08.07.2010), jul 2010.

[15] D. Yazar and A. Dunkels. Efficient Application
Integration in IP-based Sensor Networks. In
Proceedings of ACM BuildSys 2009, the First ACM
Workshop On Embedded Sensing Systems For
Energy-Efficiency In Buildings, Berkeley, CA, USA,
NOV 2009.

Âl’ ACM, 2010. This is the author’s version of the work.
It is posted here by permission of ACM for your per-



sonal use. Not for redistribution. The definitive version
was published in MidSens ’10 Proceedings of the 5th In-
ternational Workshop on Middleware Tools, Services and
Run-Time Support for Sensor Networks, (November 2010)
http://dx.doi.org/10.1145/1890784.1890787


