
978-1-4673-1239-4/12/$31.00 c©2012 IEEE

Sensor Similarity Search in the Web of Things
∗Cuong Truong, ∗Kay Römer, †Kai Chen

Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
∗{truong, roemer}@iti.uni-luebeck.de †adam808@zju.edu.cn

Abstract—An increasing number of sensors is being connected
to the Internet and their output is published on the Web, resulting
in the formation of a Web of Things (WoT) that will soon connect
tens of Billions of devices. We propose sensor similarity search,
where given a sensor, other sensors on the WoT are found that
produced similar output in the past. At the heart of our approach
is an algorithm that exploits fuzzy sets for efficiently computing
a similarity score for a pair of sensors that is used to obtain
a ranked list of matching sensors. Using sensor data sets from
real deployments, we find that this approach results in a high
accuracy.

I. INTRODUCTION

A steadily increasing number of sensors worn by people
(e.g., contained in mobile phones), embedded into the envi-
ronment (e.g., sensor networks), and into objects (e.g., smart
objects and appliances) are being connected to the Internet.
This trend is leading to the formation of an Internet of Things
(IoT) that is expected to interconnect Billions of devices by
2020 [1]. By publishing the resulting sensor data streams in the
Web, novel real-world applications can be created by mashing
up sensors and actuators with services and data available on
the Web, leading to a Web of Things [2].

As in the traditional web, search will be a key service also in
the WoT to enable users to find sensors with certain properties.
Existing directories of online sensors such as Pachube1, GSN
[3], or Microsoft SensorMap [4] support search for sensors
based on textual metadata that describes the sensors (e.g.,
type and location of a sensor, measurement unit, object to
which the sensor is attached) and which is manually entered
by the person deploying the sensor. Other users can then search
for sensors with certain metadata by entering appropriate
keywords.

Unfortunately, this approach does not work well in practice,
as humans make mistakes when entering metadata, different
users use different terms to describe the same concept, or
important metadata is not entered at all. For example, in [5]
a user study is described where 20 participants were asked to
enter metadata for a wheather station sensor using a simple
user interface. Those 20 persons made 45 mistakes in total.

There are several approaches to address this problem.
Firstly, some metadata of a sensor such as sensor type can
be stored on the sensor during production using so-called
Transducer Electronic Data Sheets (TEDS) as defined by IEEE
1451, for example. However, most of the relevant metadata of

1https://pachube.com/

a sensor depends on the deployment and use of the sensor
(e.g., logical location of the sensor, object to which the sensor
is attached) and cannot be provided by the producer of a
sensor. Secondly, there are efforts to provide a standardized
vocabulary to describe sensors such as SensorML or the
Semantic Sensor Network Ontology (SSN). Unfortunately,
these ontologies and their use are rather complex and end users
likely won’t be able to provide correct descriptions of sensors
and their deployment context without help from experts.

Note that the same problem also applies to search for
multimedia items on the web such as images and videos, which
typically can only be found if appropriate textual descriptions
are provided by users. One interesting alternative approach that
avoids the use of metadata altogether is searching by example.
For example, Google Images includes an option to find images
that are similar to another image. There are even specialized
search engines such as TinEye2 which find images that are
similar to a given image.

In this paper we adopt this search-by-example approach to
sensors, i.e., a user provides a sensor, respectively a fraction
of its past output as an example, and requests sensors that
produced similar output in the past. This service could be
used for different purposes. Firstly, it could be used to find
places with similar physical properties. For example, if one
wants to find places that have similar climatic conditions as
a known place A, one could pick a temperature sensor that is
known to be at place A, and then search for other temperature
sensors with similar output. Secondly, it could be used to
assist users with the formulation of a metadata description of a
newly deployed sensor. A user would deploy a new sensor and
then search for sensors with similar output, fetch the metadata
of the found sensors, and reuse appropriate fractions of the
metadata for the new sensor.

II. REQUIREMENTS AND ARCHITECTURE

As we aim to apply sensor similarity search to the Internet
of Things, the approach should be scalable to many sensors.
This implies that the comparison of two sensors in order to
decide if they are similar should be efficient. In particular,
as many sensors have limited power supply, communication
overhead with sensors should be minimized, which implies
that sensors should compute a compact summary of their
past output data that can be downloaded from the sensors

2www.tineye.com

Internet
S1

S2

S3

S4

score : 1.0

score : 0.8

score : 0.5

score : 0.2

S1

S4

S3

S2

search for:

User

crawls

crawls

crawls

Fig. 1: Architecture of sensor similarity search.

with little communication overhead and indexed by a search
engine. Further, the comparison of the output of a sensor with
those indexed summary data structures should be efficient such
that search results are returned quickly to the user. Finally,
this comparison function should be flexible such that sensors
can be found that show similar trends in their output despite
differences in the actual output time series.

Fig. 1 illustrates our approach. We represent the output of
a sensor over a long time period by a fuzzy set which is
computed by the sensor itself. Periodically the search engine
crawls sensors to download and index those fuzzy sets in a
distributed database system in the Internet. Each fuzzy set
has a memory footprint of few tens of bytes and can thus
be efficiently downloaded from the sensors. Note that each
sensor gateway acts as a communication bridge between a
local sensor network and the Internet.

To perform a search, the user specifies a time series of
sensor values. This time series is compared to the indexed
fuzzy sets and a similarity score is computed for each indexed
sensor. The sensors with the highest similarity scores are
presented to the user sorted by decreasing similarity score.

In the remainder of the paper we describe how fuzzy sets
are extracted from sensor data, how similarity scores are
computed, and evaluate the approach using two data sets
obtained from real sensors. Finally, we discuss how we intend
to extend this approach for scalable sensor similarity search
in the Web of Things.

III. COMPARING SENSORS

In this section, we propose a method based on fuzzy sets
to compute a similarity score for a pair of sensors based
on their output. A fuzzy set [6] is an extension of a crisp
set which allows partial membership rather than only binary
membership. A fuzzy set F on a universe of discourse U is
defined by its membership function µF (x), x ∈ U such that
µF (x) ∈ [0, 1]. The closer the value of this function is to one
for a given x, the more x belongs to the fuzzy set F . With this
definition, an element x ∈ U can be a member of more than
one fuzzy set at a time, with different degrees of membership.

time

light

time

light

0,25

0,75

meeting
room kitchen

sensor
readings

0

1

X

Fig. 2: Fuzzy-based sensor similarity computation.

11

10 20

15 25

10 20 10 20

21

δ(S,V) = (15-10) + (25-20) = 10 δ(S,V) = (11-10) + (21-20) = 2

S

V

S

V

Fig. 3: Measurement Range Difference.

A. Approach

Fig. 2 illustrates our approach. We have the output mea-
surements of two sensors located in two locations kitchen
and meeting room. Suppose that for each sensor we have
built a fuzzy set from its measurements, i.e., we have
Fkitchen = {(x, µkitchen(x))|x ∈ R} and Fmeeting room =
{(x, µmeeting room(x))|x ∈ R}. Note that we assume the set
of real numbers R as the universe of discourse to represent
scalar measurements of sensors. For the sake of illustration we
assume the shape of the membership functions is a triangle.
Now given a set of measurements US ⊂ R of a third sensor
S, we want to compute scores of the similarity of S with the
sensor in the kitchen and the sensor in the meeting room.

If we pick a sample measurement x ∈ US , the membership
functions of Fkitchen and Fmeeting room will tell us the
degree of membership of x in the two fuzzy sets, which is
µmeeting room(x) = 0.75 > 0.25 = µkitchen(x). We therefore
say that the value x is more likely read by the sensor located
in the meeting room. Based on this approach, we define the
similarity score of the sensor S with respect to a sensor V as

ΦS(V) =
1

δ(S, V)

1

|US |
∑
x∈US

µV (x) (1)

We call δ(S, V) the measurement range difference between
two sensors S and V that is given by

δ(S, V) = |qS1 − qV1 |+ |qS3 − qV3 | (2)

where qS1 , qS3 ∈ US and qV1 , qS3 ∈ UV are the first and
third quartiles of the measurement sets of sensors S and V ,
respectively. We call [qS1 , qS3] and [qV1 , qV3] the measurement
ranges of sensor S and V . Fig. 3 shows an example for
measurement ranges of two sensors S and V . The small
overlap in the left between the two ranges implies a large
δ(S, V), wheras the big overlap in the right implies a small
δ(S, V).

In summary, the similarity score is the higher, the more the
measurement ranges overlap and the more the measurements
of sensor S belong to the fuzzy set defined by the output of

Fig. 4: Fuzzy set construction.

sensor V . Note that the similarity score of sensors with disjoint
measurement ranges is zero.

B. Fuzzy Set Construction

We will elaborate in this subsection how a fuzzy set is
constructed from a given set of sensor measurements. Consider
Fig. 4. The left image shows the time series of measurements
of a temperature sensor S over a time period ∆t, and the graph
in the middle shows the constructed fuzzy set. We denote FS
as the constructed fuzzy set and US as the set of measurements
of S. We want to find a membership function µS(x) that
represents the series of measurements of the sensor over time.

Considering an interval ∆x = [x − r, x + r] ⊂ [xSmin,
xSmax] for r > 0, we are interested in how many measurements
x ∈ US fall into [x− r, x+ r] over ∆t because this captures
the behaviour of the object that our sensor is measuring: does
temperature tend to be within the range ∆x? Put in another
way, the density of the population of sensor measurements in
∆x describes the likelihood of temperature to be within ∆x.
By letting r → 0 and by sliding ∆x over [xSmin, xSmax] we
can calculate the likelihood for each temperature value x in the
measurement range. µS(x) is then defined as this likelihood
of x ∈[xSmin, xSmax].

The work in [7] presents a way to compute how densely
a data point is surrounded by other data points in close
proximity. We borrow this idea to compute the density of
sensor measurements within an interval [x− r, x+ r] around
a measurement value x, and call it the neighbor density of x:

ndg(x) =
∑
y∈US

e
−
[

2dE(x,y)

r

]2
(3)

where dE(x, y) is Euclidean distance between two values x
and y. Due to the exponential function, measurement values
which are outside of [x − r, x + r] have little influence on
ndg(x). We then normalize ndg(x) to values between 0 and
1 using min-max normalization. µS(x) is then defined as
the normalized version of ndg(x). We call this membership
function the neighbor density function.

For a visual explanation of our approach, consider Fig.
4 again, which shows the neighbor density function of the
temperature sensor in the middle. The peak in region “2M”
results from a dense distribution of measurements within
region “2L”, while the low values in region “1M” are explained
by a sparse distribution of measurements within region “1L”.

C. Fuzzy Set Approximation

Since the storage overhead for a fuzzy set is proportional
to the size of the measurement range of the sensor, it may
be expensive to store a fuzzy rule, or more specifically the
fuzzy set and its membership function. Furthermore, this cost
is multiplied by the number of sensors which is expected to
be large in the IoT vision. To reduce storage overhead, we
propose to represent the neighbor density function by a set of
line segments that approximate the curve of the function. An
illustration is given in Fig. 4, where in the middle we have
the neighbor density function whose linear approximation is
shown in the right side of the figure.

To approximate the membership function µS(x) of a sen-
sor S, we first define a derivation threshold dth, compute
µS(x)’s first derivative d1 at x1 (x1 is the second smallest
value in the measurement range of S), and mark the point
A1 := (x1, µS(x1)). We then iterate over points (xi, µS(xi))
on the curve and compute µS(x)’s first derivative di, until
di − d1 > dth. We assign x2 := xi, A2 := (x2, µS(x2)),
and store the line A1A2 as the approximation of µS(x) for
the interval [x1, x2]. After that, we assign A1 := A2 and
d1 := di, and continue to iterate over points on the curve in
the same fashion until we reach the point (xSmax, µS(xSmax)).
The resulting set of line segments is the desired approximation
of µS(x).

Due to the exponential weighting of distances in equation
3, fuzzy sets typically have a smooth curve and can be
represented by few line segments. As each line segment
(except the first one) can be defined by two integer values,
the memory footprint of the fuzzy set is small and typically
in the order of few tens of bytes.

D. Towards Scalable Similarity Search

As outlined in Sect. II, all fuzzy sets would be indexed in
a data base. For a search operation, the output time series of
a given sensor would be used to compute a similarity score
for each fuzzy set. While the comparison of two sensors is
efficient and takes in the order of few tens of microseconds
even when implemented in Java (see Sect. IV), the search
latency grows linearly in the number of sensors. In future
work, we therefore explore efficient algorithms to speed up
the search. Here we briefly discuss potential directions.

Similar to typical web search engines, it may be sufficient
to provide a small list of N top-ranked sensors to the user
instead of a complete list of all sensors. This can be exploited
to reduce the computation overhead of similarity search.

A first, simple strategy is to parallelize search by distributing
the fuzzy sets over multiple computers. Each search request
would be forwarded to all computers, similarity scores would
be computed in parallel, the top-N list of sensors would be
returned and merged to obtain the final rank list.

To speed up computation of similarity scores on a single
computer, an incremental approach can be used, by first com-
puting an approximate similarity score according to equation
1 for a small subset of the measurements US of the given
sensor, for example, by only using every 10th sample from

the time series. In a second pass, more samples are added,
say every 5th sample, and so on. This way, a first approximate
search result can be very quickly presented to the user which
is continuously refined the longer the user waits.

If we have computed the scores for the first N sensors
and sorted them by decreasing score, we can ignore each
further sensor with a score that is smaller than the score of the
lowest-ranked of the N sensors. Note that the score computed
according to equation 1 is additive and each summand is
upper-bounded by 1

|US |δ(S,V) as the fuzzy set function is
upper-bounded by 1. When we have computed a partial sum s
and k summands remain, we know that the final score cannot
be larger than s+ k

|US |δ(S,V) . If that value is smaller than the
score of the lowest-ranked of the N sensors, we can abort the
computation of the score and ignore the sensor. Otherwise,
if the sensor has a score that is larger then the score of the
lowest-ranked of the N sensors, the new sensor is inserted into
the list according to its score and the last sensor in the list is
dropped. Note that the similarity score of sensors with disjoint
measurement ranges is zero according to equation 1, which can
be decided with a simple check without even computing the
sum.

Finally, there are cases where for any given sensor S, the
similarity score with a sensor V1 is always smaller than the
similarity score with a sensor V2, i.e., ∀S : ΦS(V1) < ΦS(V2).
The resulting partial order V1 ≺ V2 over sensors can be
exploited to prune large numbers of sensors during search.

IV. EVALUATION

In this section we evaluate the performance of our sensor
similarity search. As a result of searching for a given sensor,
a list of sensors ranked by decreasing similarity score is
obtained. Similar sensors should be ranked highly (i.e., on top
of the list), while dissimilar sensors should be ranked low (i.e.,
at the bottom of the list). Unfortunately, “similar” is highly
subjective and depends on the perception of the user. One
user may consider two sensors to be similar, while another
user may not. Hence, it is difficult to obtain a ground truth for
evaluation.

To resolve this issue, we manually group sensors based
on their location as nearby sensors should produce similar
output if the measured physical quantity has a low spatial
variation. For example, all temperature sensors in a room
should produce similar output and may thus form a group.
This way, we obtain groups of sensors G1, G2, We now
pick a sensor s from a group Gi and search for similar sensors.
We would expect that all sensors from the same group Gi are
ranked highest. However, the result may be imperfect, i.e.,
sensors from Gi might be ranked lower than sensors from
other groups. Therefore, we need a metric to quantify the
accuracy of a rank list, which we describe next before we
present the evaluation setup and results.

A. Degree of Ranking Accuracy

Figure 5 shows possible rank lists obtained as a result when
searching for a sensor s from a group Gi. The check marks

Fig. 5: Illustration of the DOA metric.

indicate matching sensors, i.e., sensors from the same group
Gi, while crosses indicate non-matching sensor from other
groups. The best possible result is list L4 as all matching
sensors are ranked highest. The worst result is list L1.

We now define a metric that maps a rank list to a scaler value
between 0 (worst result) and 1 (best result). For each matching
sensor, we compute the ranking error, i.e., the number of non-
matching sensors ranked higher. We then compute the average
ranking error of all matching sensors, which equals 0 in the
best case, and equals the number of non-matching sensors in
the worst case. To normalize to the interval [0, 1], we divide
by the number of non-matching sensors. By subtracting the
resulting value from 1, we obtain the desired metric. Thus,
we define the degree of ranking accuracy (DOA) of a rank list
L as follows:

DOA(L) = 1− 1

CL(NL − CL)
×

NL∑
i=1

eL(i) (4)

where NL is the length of rank list L, CL is the number
of matching sensors in L, and eL(i) is the ranking error of a
matching sensor at rank i, i.e., the number of non-matching
sensors ranking higher than i. If i is a non-matching sensor,
then eL(i) := 0. Fig. 5 shows the value of the metric for
different rank lists.

B. Experiment Setup

To evaluate our similarity search, we implement a simula-
tion tool in Java that is able to replay recorded measurements
of multiple sensor, execute search operations over these sen-
sors, and compute the resulting ranking accuracy according to
the above metric.

We use two data sets with recorded sensor values from real-
world deployments for the evaluation. As described earlier, we
group sensors in each of the data sets based on their location,
such that sensors in a group should observe similar (but not
identical) output.

The first is the NOAA data set3 which contains the output
of sensors monitoring ocean and atmosphere (e.g., barometric
pressure, wind speed, air temperature, conductivity, water ve-
locity) that are deployed along the coast lines of various places
in North America. We use 23 barometric-pressure sensors from
this data set and group them into 5 groups, namely Alaska (3

3http://tidesandcurrents.noaa.gov/gmap3

Fig. 6: Our selection of locations in the NOAA data set.

Fig. 7: Our selection of locations in the Intel Lab data set.

sensors), West-Coast, Great-Lakes, East-Coast, and Hawaii (5
sensors each) as shown in Fig. 6.

The second is the IntelLab data set4 which contains recorded
measurements of 54 sensor nodes equipped with four different
sensors, namely temperature, light, battery voltage, and humid-
ity (i.e., 216 sensors in total). These sensors were deployed in
the Intel Berkeley Research Lab between February 28th and
April 5th, 2004. We select a set of 12 humidity sensors and
group them into three groups, namely Lecture-Hall (4 sensors),
Dining-Room (4 sensors), and Meeting-Room (4 sensors) as
shown in Fig. 7.

To perform the evaluation, we sequentially pick one sensor
after another from each of the two test sets, search for sensors
similar to that one, obtain a rank list, and compute the DOA
value. For each sensor, we use the last 24 hours of data which
is representative as the data tends to repeat every day. This
approximately equals 1500 data points in the IntelLab data
set and 200 data points in the NOAA data set.

C. Accuracy

Figs. 8 and 9 show the resulting DOA values when search-
ing for each of the sensors in the NOAA and IntelLab data
sets, respectively. Also, a box plot aggregating the results is
shown.

As observed in the figures, our sensor similarity search
obtains a high degree of accuracy as the average DOA is
above 0.95 for both data sets. The boxplots show a stable per-
formance of our approach with small first and third quartiles,
i.e., 0.04 for NOAA and 0.07 for IntelLab. There are, however,
a few outliers such as search trials number 10 and 23 in Fig. 8,
and number 1 in Fig. 9. The reason for this is that even though
sensors in each group are deployed close to each other, they
may experience significant variations due to microclimates (in

4http://db.csail.mit.edu/labdata/labdata.html

Fig. 8: Degree of accuracy (NOAA).

Fig. 9: Degree of accuracy (IntelLab).

the NOAA data set) or due to sensors be ing close to the
heating or air conditioner (in the IntelLab data set).

D. Performance

We investigate the time needed to compute a similarity score
for a pair of sensors as this is the fundamental operation
performed by the search engine. We use the approach in
[8] to minimize the impact of garbage collection and just-
in-time compilation in the Java VM on computation time
measurement.

For a similarity score computation, we obtained an average
computation time of 150µs for the IntelLab data set, and 20µs
for the NOAA data set. The difference stems from the fact
that the number of measurements per day in NOAA is much
smaller (200) than for the IntelLab data set (1500). That is,
even with a brute force approach we can compare against
6666 to 50000 sensors per second. The computer used in our
experiment has an Intel Core i5 CPU that runs at a clock rate
of 2.4Ghz.

It is worth noting that, even though the number of measure-
ments per day of NOAA sensors is much smaller than that of
IntelLab sensors, the accuracy is similar for both data sets as
can be seen in Figs. 8 and 9. This indicates that the incremental
approach outlined in Sect. III-D may be very effective.

V. RELATED WORK

Content-based similarity search has been used in traditional
multimedia systems to search for images and videos that are
similar to a given example image or video [9], [10]. However,
these methods cannot be applied to sensors.

In the context of the IoT, a number of systems support
search for sensors based on metadata, for example Pachube5,
GSN [3], or Microsoft SensorMap [4]. Our approach is com-
plementary as it does not rely on metadata, but searches for
sensors with similar output. However, similarity search could
be integrated with search based on metadata, e.g., performing
similarity search only for sensors with certain metadata, or
first searching sensors based on metadata, and then searching
for sensors similar to some of the found sensors.

In recent work, we also investigate the related problem of
searching for sensors that output a given value at the time of
the query [11]. However, in our current work we consider the
statistical similarity of sensors over a longer period of time,
which is a different problem.

The work in [12] identifies similarities between generated
streams of neighbouring nodes in a sensor networks so that the
streams can be aggregrated to save bandwidth. A data stream is
divided into multiple sets and these sets are compared against
the sets of another data stream to find similarites using the
Jaccard similarity function. Our goal is, however, different as
we do not seek for similar parts of two data streams, but we
want to determine if the two entire streams are similar by
using the fuzzy set representation of sensor data.

In [13], the authors propose a systematic design for a search
application in the Web of Things. Their design is based on
clustering of sensors with similar semantic descriptions. Our
work aims to provide a fundamental service that determines
if two sensors are similar based on their output data.

The work in [14] proposes to automatically create clus-
ters of sensors that adhere to a semantic boundary (e.g.,
a room) based on computing the similarity between sensor
outputs, rather than conventional networking metrics (e.g.,
connectivity). Their approach is expensive in terms of memory
and computation overhead. They require storing all sensor
measurements either at a central processing point or at sensors
while we need to store only a much lighter approximation of
a fuzzy set. Further, similarity computation using correlation
coefficients is costly when compared to our approach. Their
computation also requires two measurement sets to have the
same number of samples while ours does not.

The so-called context proximity paradigm is discussed in
[15] as a secure way for connecting and grouping sensors.
The key idea is that sensors in close context proximity should
perceive correlated patterns thus can be securely connected
(e.g., two devices being shaken at similar patterns as they
both are attached to the same walking person). Lester et al.
exploit this idea in [16] using accelerometer sensor data to
group sensors, that are worn by the same person, with high
accuracy. Rather than grouping a small number of sensors,
our focus is different as we aim at searching for sensors at
a much larger scale, using a different technique, fuzzy sets,
to model the behaviour of sensors from their outputs, and use
these models to compute the similarity of different sensors.

5https://pachube.com/

VI. CONCLUSION AND OUTLOOK

We are witnessing the formation of a Web of Things, where
the output of sensors connected to the Internet is published and
mashed up with data and services on the Web to create novel
real-world applications. A fundamental service in the resulting
Web of Things is search for sensors. Instead of relying on
manual annotations (which are often incorrect, inconsistent, or
incomplete), we propose sensor similarity search, where based
on the past output of a sensor, sensors with similar output
are found. We designed an efficient approach to compute a
similarity score for a pair of sensors. All sensors compute
fuzzy sets that represent their past output using only few tens
of bytes. These fuzzy sets are indexed in a data base. Given
the output of another sensor, similarity scores are computed
for each indexed sensor, sensors are ranked by this score
and returned to the user. Using sensor data from two real-
world deployments, we could show the high accuracy of our
approach. Building upon those results, we will explore scalable
search algorithms to support searching among large numbers
of sensors in the Web of Things. Eventually, we also plan to
perform a user study to assess the accuracy of our approach.

REFERENCES

[1] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” White Paper, Cisco Internet Business Solutions
Group, April, 2011.

[2] F. Mattern and C. Floerkemeier, From the Internet of Computers to the
Internet of Things, ser. LNCS. Springer, 2010, vol. 6462, pp. 242–259.

[3] A. Salehi, M. Riahi, S. Michel, and K. Aberer, “Gsn, middleware for
streaming world,” In Proc. 10th Int. Conf. on Mobile Data Management,
2009.

[4] S. Nath, J. Liu, and F. Zhao, “Sensormap for wide-area sensor webs,”
IEEE Computer, 2008.

[5] A. Broering, F. Bache, T. Bartoschek, and C. P. van Elzakker, “The sid
creator: A visual approach for integrating sensors with the sensor web,”
14th AGILE Int. Conf. on Geographic Information Science, April 2011,
Utrecht, Netherlands.

[6] L. A. Zadeh, “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Trans. on Sys., Man and Cybern.,
vol. SMC-3, 1973.

[7] S. L. Chiu, “Extracting fuzzy rules from data for function approximation
and pattern classification,” Fuzzy Information Engineering A Guided
Tour of Applications, pp. 1–10, 1997.

[8] B. Boyer, “Robust java benchmarking: Part 1 and part 2,” IBM’s
developerWorks, Technical Library, 2008.

[9] P. Darasb, T. Semertzidis, L. Makrisb, and M. G. Strintzisa, “Similarity
content search in content centric networks,” Proc. Intl. Conf. on Multi-
media, MM ’10.

[10] Z. Wang, M. D. Hoffman, P. R. Cook, and K. Li, “Vferret: Content-based
similarity search tool for continuous archived video,” CARPE’06.

[11] B. M. Elahi, K. Roemer, B. Ostermaier, M. Fahrmair, and W. Kellerer,
“Sensor ranking: A primitive for efficient content-based sensor search,”
IPSN ’09, San Francisco, CA, USA.

[12] J. M. Bahi, A. Makhoul, and M. Medlej, “Data aggregation for periodic
sensor networks using sets similarity functions,” IWCMC, 2011.

[13] B. Christophe, V. Verdot, and V. Toubiana, “Searching the web of
things,” IEEE Intl. Conf. Semantic Computing, 2011.

[14] M. Gauger, olga Saukh, M. Handte, and P. J. Marron, “Sensor-based
culstering for indoor applications,” SECON’08, 2008.

[15] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H.-
W. Gellersen, “Smart-its friends: A technique for users to easily establish
connections between smart artefacts,” Proc. Ubicomp, 2001.

[16] J. Lester, B. Hannaford, and G. Borriello, “”are you with me?” - using
accelerometers to determine if two devices are carried by the same
person,” In Proc. 2nd Int. Conf. Pervasive Computing, 2004.

