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Abstract—An increasing number of sensors is being connected
to the Internet and their output is published on the Web, resulting
in the formation of a Web of Things (WoT) that will soon connect
tens of Billions of devices. As in the traditional web, search will
be a key service also in the WoT to enable users to find sensors
with certain properties. We propose sensor similarity search,
where given a sensor, other sensors on the WoT are found that
produced similar output in the past. At the heart of our approach
is an algorithm that exploits fuzzy sets for efficiently computing
a similarity score for a pair of sensors that is used to obtain
a ranked list of matching sensors. Using sensor data sets from
real deployments, we find that this approach results in a high
accuracy.

I. INTRODUCTION

A steadily increasing number of sensors worn by people
(e.g., contained in mobile phones), embedded into the envi-
ronment (e.g., sensor networks), and into objects (e.g., smart
objects and appliances) are being connected to the Internet.
This trend is leading to the formation of an Internet of Things
(IoT) that is expected to interconnect Billions of devices by
2020 [1]. By publishing the resulting sensor data streams in the
Web, novel real-world applications can be created by mashing
up sensors and actuators with services and data available on
the Web, leading to a Web of Things [2].

As in the traditional web, search will be a key service also in
the WoT to enable users to find sensors with certain properties.
Existing directories of online sensors such as Pachube1, GSN
[3], or Microsoft SensorMap [4] support search for sensors
based on textual metadata that describes the sensors (e.g.,
type and location of a sensor, measurement unit, object to
which the sensor is attached) and which is manually entered
by the person deploying the sensor. Other users can then search
for sensors with certain metadata by entering appropriate
keywords.

Unfortunately, this approach does not work well in practice,
as humans make mistakes when entering metadata, different
users use different terms to describe the same concept, or
important metadata is not entered at all. For example, in [5]
a user study is described where 20 participants were asked to
enter metadata for a weather station sensor using a simple user
interface. Those 20 persons made 45 mistakes in total.

There are several approaches to address this problem.
Firstly, some metadata of a sensor such as sensor type can
be stored on the sensor during production using so-called
Transducer Electronic Data Sheets (TEDS) as defined by IEEE

1https://pachube.com/

1451, for example. However, most of the relevant metadata of
a sensor depends on the deployment and use of the sensor
(e.g., logical location of the sensor, object to which the sensor
is attached) and cannot be provided by the producer of a
sensor. Secondly, there are efforts to provide a standardized
vocabulary to describe sensors such as SensorML or the
Semantic Sensor Network Ontology (SSN). Unfortunately,
these ontologies and their use are rather complex and end users
likely won’t be able to provide correct descriptions of sensors
and their deployment context without help from experts.

Note that the same problem also applies to search for
multimedia items on the web such as images and videos, which
typically can only be found if appropriate textual descriptions
are provided by users. One interesting alternative approach that
avoids the use of metadata altogether is searching by example.
For example, Google Images includes an option to find images
that are similar to another image. There are even specialized
search engines such as TinEye2 which find images that are
similar to a given image.

In this paper we adopt this search-by-example approach to
sensors, i.e., a user provides a sensor, respectively a fraction
of its past output as an example, and requests sensors that
produced similar output in the past. We call this sensor
similarity search service. This service could be used for
different purposes. Firstly, it could be used to find places with
similar physical properties. For example, if one wants to find
places that have similar climatic conditions as a known place
A, one could pick a temperature sensor that is known to be at
place A, and then search for other temperature sensors with
similar output. Secondly, it could be used to assist users with
the formulation of a metadata description of a newly deployed
sensor. A user would deploy a new sensor and then search for
sensors with similar output, fetch the metadata of the found
sensors, and reuse appropriate fractions of the metadata for
the new sensor.

The contribution of this paper is four-fold: (i) we propose
sensor similarity search for the Web of Things and present
an architecture to realize this service; (ii) we design a light-
weight, efficient sensor comparison algorithm based on fuzzy
logic that forms the heart of sensor similarity search; (iii)
we evaluate our approach using data sets from three real-
world deployments and find that our approach has a high
accuracy and is computationally efficient; and (iv) we present
a prototype implementation of our approach.

2www.tineye.com



The motivation for using fuzzy logic is two-fold: firstly,
fuzzy logic naturally addresses the uncertainty and noisy
nature of sensor data and yet provides a robust way to
assess the similarity of sensor output. Secondly, traditional
approaches for comparing sensor data streams are too heavy-
weight for resource-constrained sensor nodes either in terms
of computation (e.g., performing a spectral analysis of sensor
data using FFT is not possible on low-power micro-controllers
used on sensor nodes) or in terms of communication (sending
raw data streams over wireless may not be feasible).

In the remainder of the paper we explain the sensor simi-
larity search architecture, discuss related work, describe how
fuzzy sets are extracted from sensor data, how similarity scores
are computed, evaluate our work using data sets obtained from
real sensors, and finally demonstrate a prototype running setup
of our work.

II. REQUIREMENTS AND ARCHITECTURE

As we aim to apply sensor similarity search to the Internet
of Things, the approach should be scalable to many sensors.
This implies that the comparison of two sensors in order to
decide if they are similar should be efficient. In particular,
as many sensors have limited power supply, communication
overhead with sensors should be minimized, which implies
that sensors should compute a compact summary of their
past output data that can be downloaded from the sensors
with little communication overhead and indexed by a search
engine. Further, the comparison of the output of a sensor with
those indexed summary data structures should be efficient such
that search results are returned quickly to the user. Finally,
this comparison function should be flexible such that sensors
can be found that show similar trends in their output despite
differences in the actual output time series. In this paper we
focus on developing an efficient sensor comparison algorithm
that meets the above requirements.

Fig. 1 illustrates our proposed architecture, where low-
power sensor nodes are connected to the Internet via gateways.
We encode the output of a sensor over a long time period by a
fuzzy set which is computed by the sensor itself. Periodically
the search engine crawls sensors to download and index those
fuzzy sets in a distributed database system in the Internet. Each
fuzzy set has a memory footprint of few tens of bytes and can
thus be efficiently downloaded from the sensors.

To perform a search, the user specifies a time series of
sensor values. This time series is compared to the indexed
fuzzy sets and a similarity score is computed for each indexed
sensor. The sensors with the highest similarity scores are
presented to the user sorted by decreasing similarity score.

III. RELATED WORK

In this section we put our contribution into the context of
work that is concerned with search for sensors and similarity of
sensors. We structure the discussion of related work according
to their design goal and their approach in comparing two
different streams of sensor data.
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Fig. 1: Architecture of sensor similarity search.

A. Search based on Metadata

In the context of the IoT, a number of systems support
search for sensors based on metadata, for example Pachube3,
GSN [3], or Microsoft SensorMap [4]. Our approach is com-
plementary as it does not rely on metadata, but searches for
sensors with similar output. However, similarity search could
be integrated with search based on metadata, e.g., performing
similarity search only for sensors with certain metadata, or
first searching sensors based on metadata, and then searching
for sensors similar to some of the found sensors.

In [6], the authors propose a systematic design for a search
application in the Web of Things. Their design is based
on clustering of sensors with similar semantic descriptions.
Again, our work is different as it aims to provide a fundamen-
tal service that determines if two sensors are similar based on
their output data.

Content-Based Sensor Search
Content-based sensor search refers to the problem of finding

a sensor that outputs a given value at the time of a query and
is investigated in [7] and [8]. The key idea is to exploit the
periodicities in sensor output (e.g., a meeting room is occupied
every Monday from 8 to 10), or correlations between sensors
(e.g., parking spots close to the entrance of a building are
often all occupied, whereas spots further away are often free)
to build prediction models that predict which sensors would
output the sought value at the time of the query. However,
in the present paper we investigate the statistical similarity of
sensors over a longer time window, which is a fundamentally
different problem.

B. Similarity of Data Streams

Computing a similarity score of two data streams is a
fundamental problem that has been studied in different con-
texts. In traditional multimedia systems, similarity of audio
data, images, and video streams is considered (e.g., [9], [10]).
However, these methods are often not tailored to scalar sensors
and their resource footprint typically exceeds the capability of
low-power sensor networks by far.

The work in [11] aims at identifying similarities between
data streams generated by neighbouring nodes in a sensor
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networks so that the streams can be aggregated to save
bandwidth. A data stream is divided into multiple chunks and
these chunks are compared against the chunks of another data
stream to find similarities using the Jaccard similarity function.
Our goal is, however, different as we do not seek for similar
parts of two data streams, but we want to determine if the two
entire streams are similar by using the fuzzy set representation
of sensor data.

The authors in [12] address clustering of data streams in
general based on their similarity by developing an online
version of the K-means algorithm which involves discrete
Fourier transform and pairwise distance computation of data
streams on-the-fly. Compared to our approach, this technique
is clearly more resource-demanding, in particular with respect
to computation overhead.

The work in [13] focuses on sensor data streams and
clusters sensors based on the similarity between their outputs.
Their approach has a high memory footprint as all sensor
measurements need to be stored either at a central processing
point or at sensors, while we need to store only a much
more lightweight fuzzy set. Further, similarity computation
using correlation coefficients is costly when compared to our
approach. Their computation also requires two measurement
sets to have the same number of samples while ours does not.

[14] and [15] explore secure pairing devices if their sensors
obtain similar output data (e.g., two objects shaken together
would experience similar acceleration patterns). The tech-
nique used to compute similarity of sensor output is based
on a coherence function to measure the correlation in the
frequency domain between data streams. This requires that
sensor exchange raw data streams, while with our approach
only compact fuzzy sets are required.

While the above approaches investigate the computation of
the similarity of sensor output, their overall aim is different.
None of the above techniques addresses sensor similarity
search in the Web of Things as we do.

In a previous workshop paper [16], we outlined the basic ap-
proach of sensor similarity search. The present conference pa-
per substantially extends [16] by considering temporal aspects
of sensor similarity, be adding a broader and more detailed
evaluation, and by describing a prototype implementation.

IV. COMPARING SENSORS

In this section, we propose a method based on fuzzy sets
to compute a similarity score for a pair of sensors based
on their output. A fuzzy set [17] is an extension of a crisp
set which allows partial membership rather than only binary
membership. A fuzzy set F on a universe of discourse U is
defined by its membership function µF (x), x ∈ U such that
µF (x) ∈ [0, 1]. The closer the value of this function is to one
for a given x, the more x belongs to the fuzzy set F . With this
definition, an element x ∈ U can be a member of more than
one fuzzy set at a time, with different degrees of membership.

A. Approach
Fig. 2 illustrates our approach. We have the output mea-
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Fig. 2: Fuzzy-based sensor similarity computation.
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and meeting room. Suppose that for each sensor we have
built a fuzzy set from its measurements, i.e., we have
Fkitchen = {(x, µkitchen(x))|x ∈ R} and Fmeeting room =
{(x, µmeeting room(x))|x ∈ R}. Note that we assume the set
of real numbers R as the universe of discourse to represent
scalar measurements of sensors. For the sake of illustration we
assume the shape of the membership functions is a triangle.
Now given a set of measurements US ⊂ R of a third sensor
S, we want to compute scores of the similarity of S with the
sensor in the kitchen and the sensor in the meeting room.

If we pick a sample measurement x ∈ US , the membership
functions of Fkitchen and Fmeeting room will tell us the
degree of membership of x in the two fuzzy sets, which is
µmeeting room(x) = 0.75 > 0.25 = µkitchen(x). We therefore
say that the value x is more likely read by the sensor located
in the meeting room. Based on this approach, we define the
similarity score of the sensor S with respect to a sensor V as

ΦS(V ) =
1

δ(S, V )

1

|US |
∑
x∈US

µV (x) (1)

We call δ(S, V ) the sensor range difference between two
sensors S and V that is given by

δ(S, V ) = |qS1 − qV1 |+ |qS3 − qV3 | (2)

where qS1 , qS3 ∈ US and qV1 , qV3 ∈ UV are the first and
third quartiles of the measurement sets of sensors S and V ,
respectively. The quartiles of a set of ordered values are the
three points that divide the set into four equal groups, each
representing a fourth of the population of the values.

To obtain the quartiles of the set of measurements of a
sensor S, we first sort the measurement values in decreasing
order. The first quartile of US , denoted by qS1 , is the maximum
among the smallest 25% of measurements of US . The second
quartile, or also called median, is the value that cuts US in
half, i.e., 50% of the measurements of US are smaller than
this value. The third quartile, denoted by qS3 , is the minimum
among the largest 25% of measurements of US . The use of
the quartiles makes sure that influence of outliers is eliminated
because outlier measurements would be located outside the
interquartile range [qS1 , qS3 ].



Fig. 4: Fuzzy set construction.

We call [qS1 , qS3 ] and [qV1 , qV3 ] the sensor ranges of sensor
S and V . Fig. 3 shows an example for sensor ranges of two
sensors S and V . The small overlap in the left between the
two ranges implies a large δ(S, V ), whereas the big overlap
in the right implies a small δ(S, V ).

The aim of the sensor range difference is two fold: (i) to
quickly rule out sensors of different types or sensors mon-
itoring different objects/environments because those sensors
would produce very different ranges of measurement values;
and (ii) if there is no clear distinction between sensors (types,
or monitored objects), then sensors that produce measurement
values within the same or very close ranges would have highest
similarity scores. Thus, prior to examining the structure of the
measurement curve of sensors, a potentially large number of
sensors are already ruled out to narrow down the search space.

In summary, the similarity score is the higher, the more the
measurement ranges overlap and the more the measurements
of sensor S belong to the fuzzy set defined by the output of
sensor V . Note that the similarity score of sensors with disjoint
measurement ranges is zero.

B. Fuzzy Set Construction

We will elaborate in this subsection how a fuzzy set is
constructed from a given set of sensor measurements. Consider
Fig. 4. The left image shows the time series of measurements
of a temperature sensor S over a time period ∆t, and the graph
in the middle shows the constructed fuzzy set. We denote FS

as the constructed fuzzy set and US as the set of measurements
of S. We want to find a membership function µS(x) that
represents the series of measurements of the sensor over time.

We denote xSmin and xSmax ∈ US the minimum and max-
imum values among the measurements of sensor S, respec-
tively. Considering an interval ∆x = [x− r, x+ r] ⊂ [xSmin,
xSmax] for r > 0, we are interested in how many measurements
x ∈ US fall into [x− r, x+ r] over ∆t because this captures
the behaviour of the object that our sensor is measuring: does
temperature tend to be within the range ∆x? Put in another
way, the density of the population of sensor measurements in
∆x describes the likelihood of temperature to be within ∆x.
By letting r → 0 and by sliding ∆x over [xSmin, xSmax] we
can calculate the likelihood for each temperature value x in the
measurement range. µS(x) is then defined as this likelihood
of x ∈[xSmin, xSmax].

The work in [18] presents a way to compute how densely
a data point is surrounded by other data points in close
proximity. We borrow this idea to compute the density of
sensor measurements within an interval [x− r, x+ r] around

V

1 2 3 4 5

1

2

3

μS, μV

1 2 3

1

2

Sa) b)S

1 2 3 4 5

1

2

3

μV,  μS

1 2 3

1
2

6 7 8 9

V

1 2 3 4 5

1

2

3

6 7

3
4

V

1 2 3 4 5

1

2

3

6 7

reordering 
of V

Fig. 5: The re-ordering effect.

a measurement value x, and call it the neighbour density of
x:

ndgS(x) =
∑
y∈US

e
−
[

2dE(x,y)

r

]2
(3)

where dE(x, y) is Euclidean distance between two values x
and y. Due to the exponential function, measurement values
which are outside of [x − r, x + r] have little influence on
ndg(x).

Note that the measurement values of a sensor S can be
represented as a discrete function of time S(ti), i = 0..|US |,
thus Eq. 3 can be rewritten as:

ndgS(x) =

|US |∑
i=1

e
−
[

2dE(x,S(ti))

r

]2
(4)

We then normalize ndgS(x) to values between 0 and 1
using min-max normalization. µS(x) is then defined as the
normalized version of ndgS(x). We call this membership
function the neighbour density function. The obtained fuzzy
set is FS = {(x, µS(x))|x ∈ US}.

For a visual explanation of our approach, consider Fig.
4 again, which shows the neighbour density function of the
temperature sensor in the middle. The peak in region “2M”
results from a dense distribution of measurements within
region “2L”, while the low values in region “1M” are explained
by a sparse distribution of measurements within region “1L”.

C. Injective Mapping Problem

Although the neighbour density function in Eq. 4 is able to
represent the series of measurements of a sensor S over time
by a compact fuzzy set, it does not guarantee an injective map-
ping between the series of measurements and the computed
fuzzy set. This issue may lead to exceptional cases where two
dissimilar sensors are considered similar due to them having
the same computed fuzzy set.

We observe that by reordering measurement values of a
sensor on the time axis, one will obtain the same fuzzy
set. Some of these reorderings will probably not appear in
reality because the resulting measurement curve would have
“jumps” which do not reflect real-world phenomena as they are
typically “smooth”, i.e., they do not suddenly change from one
state to another distant state but do gradually change between
close states. For example, the temperature within an office
typically does not suddenly jump from 18 to 50 degree Celsius.
Such “jumps” often indicate some fault (e.g., physical damage,



battery depletion, etc). Fig. 5-a illustrates this effect where a
reordering in the measurement values of sensor V results in
an identical fuzzy set to the computed fuzzy set of sensor S.

However, there are reorderings that preserve smoothness
therefore they may very well occur in practice, e.g., by flipping
the sensor measurement curve over a line parallel to the y-
axis. Fig. 5-b illustrates this, where the measurement curves
of sensor S and V look different but one of them could
be obtained by flipping the other over the line x = 3. The
resulting fuzzy sets of the two sensors are identical.

However, reordering the measurement values on the time
axis typically changes the discrete derivative S′(t). Motivated
by this fact, we propose to incorporate information about the
discrete derivative into the construction of the fuzzy set to deal
with the reordering effect.

We define S′(ti) = S(ti+1)−S(ti)
ti+1−ti as the discrete derivative

of S at ti. We then denote US′ = {x′ = S′(ti)|i = 1..|US |−1}
as the set of discrete derivatives of S. The fuzzy set of the
discrete derivatives of S can be obtained using Eq. 4, and
is denoted as FS′ = {(x′, µS′(x′))|x′ ∈ US′}, where each
µS′(x′) is the min-max normalized value of ndgS

′
(x′).

We redefine the similarity score of the sensor S with respect
to a sensor V in Eq. 1 as

ΦS(V ) =
1

δ(S, V )

1

|US |

|US |∑
i=1

µV (S(ti))× µV ′(S′(ti)) (5)

Eq. 5 says that the more the measurements and discrete
derivatives of sensor S belong to the fuzzy sets FV and FV ′

of sensor V , respectively, the higher is the similarity score. In
the language of fuzzy logic, this is equivalent to the “and”-
operator [17]. In summary, our proposal helps mitigate the
reordering effect because of the following two reasons:
• For the same set of measurements, any reordering would

generate different discrete derivative, thus resulting in
different derivative fuzzy sets and in different similarity
scores.

• For any two different sets of measurements that have the
same discrete derivative, the resulting value fuzzy sets
and similarity scores from Eq. 5 would be different.

There is, however, an exceptional case in which Eq. 5
produces the same similarity score even though the two sets
of measurements as well as the two corresponding discrete
derivatives are different. Considering two sensors S and V ,
this case happens if and only if US = UV ′ and UV = US′

due to commutative property of the multiplication in Eq. 5. In
reality, however, it is extremely unlikely that both US = UV ′

and UV = US′ hold true at the same time. Thus, we have an
effective heuristic approach for an injective mapping of sensor
time series to a pair of fuzzy sets.

D. Fuzzy Set Approximation

Since the storage overhead for a fuzzy set is proportional
to the size of the measurement range of the sensor, it may
be expensive to store a fuzzy rule, or more specifically the
fuzzy set and its membership function. Furthermore, this cost

is multiplied by the number of sensors which is expected to
be large in the IoT vision. To reduce storage overhead, we
propose to represent the neighbour density function by a set
of line segments that approximate the curve of the function.
An illustration is given in Fig. 4, where in the middle we have
the neighbour density function whose linear approximation is
shown in the right side of the figure.

To approximate the membership function µS(x) of a sen-
sor S, we first define a derivation threshold dth, compute
µS(x)’s first derivative d1 at x1 (x1 is the second smallest
value in the measurement range of S), and mark the point
A1 := (x1, µS(x1)). We then iterate over points (xi, µS(xi))
on the curve and compute µS(x)’s first derivative di, until
di − d1 > dth. We assign x2 := xi, A2 := (x2, µS(x2)),
and store the line A1A2 as the approximation of µS(x) for
the interval [x1, x2]. After that, we assign A1 := A2 and
d1 := di, and continue to iterate over points on the curve in
the same fashion until we reach the point (xSmax, µS(xSmax)).
The resulting set of line segments is the desired approximation
of µS(x).

Due to the exponential weighting of distances in equation
3, fuzzy sets typically have a smooth curve and can be
represented by few line segments. As each line segment
(except the first one) can be defined by two integer values,
the memory footprint of the fuzzy set is small and typically
in the order of few tens of bytes.

With the construction and approximation of fuzzy sets from
sensor data, comparison between a pair of sensors is efficient
as it requires only linear computation, and takes in the order
of few tens of microseconds even when implemented in Java
(see Sect. V-D).

V. EVALUATION

In this section we evaluate the performance of our sensor
similarity search. As a result of searching for a given sensor,
a list of sensors ranked by decreasing similarity score is
obtained. Similar sensors should be ranked highly (i.e., on top
of the list), while dissimilar sensors should be ranked low (i.e.,
at the bottom of the list). Unfortunately, “similar” is highly
subjective and depends on the perception of the user. One
user may consider two sensors to be similar, while another
user may not. Hence, it is difficult to obtain a ground truth for
evaluation.

To resolve this issue, we manually group sensors based
on their location as nearby sensors should produce similar
output if the measured physical quantity has a low spatial
variation. For example, all temperature sensors in a room
should produce similar output and may thus form a group.
This way, we obtain groups of sensors G1, G2, .... We now
pick a sensor s from a group Gi and search for similar sensors.
We would expect that all sensors from the same group Gi are
ranked highest. However, the result may be imperfect, i.e.,
sensors from Gi might be ranked lower than sensors from
other groups. Therefore, we need a metric to quantify the
accuracy of a rank list, which we describe next before we
present the evaluation setup and results.



L1

L2

L3

L4

DOA=0.6

DOA=0

DOA=0.63

DOA=1

Fig. 6: Illustration of the DOA metric.

A. Degree of Ranking Accuracy

Figure 6 shows possible rank lists obtained as a result when
searching for a sensor s from a group Gi. The check marks
indicate matching sensors, i.e., sensors from the same group
Gi, while crosses indicate non-matching sensor from other
groups. The best possible result is list L4 as all matching
sensors are ranked highest. The worst result is list L1.

We now define a metric that maps a rank list to a scalar value
between 0 (worst result) and 1 (best result). For each matching
sensor, we compute the ranking error, i.e., the number of non-
matching sensors ranked higher. We then compute the average
ranking error of all matching sensors, which equals 0 in the
best case, and equals the number of non-matching sensors in
the worst case. To normalize to the interval [0, 1], we divide
by the number of non-matching sensors. By subtracting the
resulting value from 1, we obtain the desired metric. Thus,
we define the degree of ranking accuracy (DOA) of a rank list
L as follows:

DOA(L) = 1− 1

CL(NL − CL)
×

NL∑
i=1

eL(i) (6)

where NL is the length of rank list L, CL is the number
of matching sensors in L, and eL(i) is the ranking error of a
matching sensor at rank i, i.e., the number of non-matching
sensors ranking higher than i. If i is a non-matching sensor,
then eL(i) := 0. Fig. 6 shows the value of the metric for
different rank lists.

B. Experiment Setup

To evaluate our similarity search, we implement a simula-
tion tool in Java that is able to replay recorded measurements
of multiple sensors, execute search operations over these
sensors, and compute the resulting ranking accuracy according
to the above metric.

We use three data sets with recorded sensor values from
real-world deployments for the evaluation. As described ear-
lier, we group sensors in each of the data sets based on their
location, such that sensors in a group should observe similar
(but not identical) output.

The first is the NOAA data set4 which contains the output
of sensors monitoring ocean and atmosphere (e.g., barometric
pressure, wind speed, air temperature, conductivity, water ve-
locity) that are deployed along the coast lines of various places
in North America. We use 23 barometric-pressure sensors from

4http://tidesandcurrents.noaa.gov/gmap3

Fig. 7: Grouping in NOAA and IntelLab data sets.

Fig. 8: Grouping in MavHome data set and Working prototype.

this data set and group them into 5 groups, namely Alaska (3
sensors), West-Coast, Great-Lakes, East-Coast, and Hawaii (5
sensors each) as shown in Fig. 7-left.

The second is the IntelLab data set5 which contains recorded
measurements of sensor nodes equipped with four different
sensors, namely temperature, light, battery voltage, and hu-
midity. These sensors were deployed in the Intel Berkeley
Research Lab between February 28th and April 5th, 2004.
We select a set of 12 humidity sensors and group them into
three groups, namely Lecture-Hall (4 sensors), Dining-Room
(4 sensors), and Meeting-Room (4 sensors) as shown in Fig.
7-right.

The third is the MavHome SmartHome sensor data set6 that
contains recorded measurements of sensors monitoring daily
living activities of people at home. The sensor types include
light, humidity, heat, and motion sensors. The data set was
recorded from January 3 to February 2, 2005. We select a
set of 8 light sensors and group them into 2 groups based on
their location: “Living-Room” (5 sensors) and “Bedroom” (3
sensors) (see Fig. 8-left).

To perform the evaluation, we sequentially pick one sensor
after another from each of the two test sets, search for sensors
similar to that one, obtain a rank list, and compute the DOA
value. We call this series of operations a search trial. For each
sensor, we use the last 24 hours of data which is representative
as the data tends to repeat every day. This approximately
equals 1500, 200, and 500 data points in the IntelLab, NOAA,
and MavHome data sets, respectively.

Note that – as outlined in Fig. 1 – the search engine periodi-
cally crawls sensors for updating the fuzzy rule database. Thus,
we perform the evaluation described in the above paragraphs
for 20 days. During these days, fuzzy rules are periodically
updated once per day while search queries arrive at the

5http://db.csail.mit.edu/labdata/labdata.html
6http://ailab.wsu.edu/mavhome/index.html



Fig. 9: Average degree of accuracy (NOAA).

Fig. 10: Average degree of accuracy (IntelLab).

gateway randomly at any time of a day.

C. Accuracy

Fig. 9, Fig. 10, and Fig. 11 show the resulting average DOA
values when searching for each of the sensors in the NOAA,
IntelLab, and MavHome data sets over the course of 20 days,
respectively. Also, a box plot aggregating the results is shown
next to each figure.

As observed in the figures, our sensor similarity search
obtains a high degree of accuracy as the average DOA is
above 0.97 for NOAA and MavHome data sets, and above 0.94
for IntelLab data set. The boxplots show a stable performance
of our approach with a small inter-quartile range, i.e., 0.025
for the NOAA data set, 0.083 for the IntelLab data set, and
0.0 for the MavHome data set.

There are, however, a few outliers such as search trials
number 22 and 23 in Fig. 9, and number 4 in Fig. 10. The
reason for this is that environmental conditions change over
time, and even though sensors in each group are deployed

Fig. 11: Average degree of accuracy (MavHome).

Fig. 12: Best case and worst case (IntelLab).

close to each other, they may experience significant variations
due to micro-climates (in the NOAA data set) or due to sensors
being close to the heating or air conditioner (in the IntelLab
data set).

To further investigate how environmental conditions affect
performance, worst case and best case performance are in-
cluded in Fig. 12 for the IntelLab data set. Our mechanism
performs the best (100% accuracy) when there are clear
climate differences among the regions, and performs worst
when (micro)climate conditions are similar among different
regions. For example, the Intel Lab is an indoor environment
with no clear boundary between regions, therefore humidity
in the meeting room and the lecture hall is sometimes very
similar, thus causing a low degree of accuracy.

The light usage in a smart home, however, does not only
depend on environmental conditions but on habits of the
people living in the house, which differs clearly between
living room and bedroom. This explains why evaluation of
MavHome data set results in the highest accuracy among the
three data sets (see Fig. 11).

D. Performance and Scalability

We investigate the time needed to compute a similarity score
for a pair of sensors as this is the fundamental operation
performed by the search engine. We use the approach in
[19] to minimize the impact of garbage collection and just-
in-time compilation in the Java VM on computation time
measurement.

For a similarity score computation, we obtained an average
computation time of 222µs for the IntelLab data set, 28µs
for NOAA, and 70µs for MavHome. The difference stems
from the fact that the number of measurements per day in
NOAA (200) and MavHome (500) is much smaller than for
the IntelLab data set (1500). That is, we can compare against
4505 to 35714 sensors per second. The computer used in our
experiment has an Intel Core i5 CPU that runs at a clock rate
of 2.4Ghz.

It is worth noting that, even though the number of mea-
surements per day of NOAA and MavHome sensors is much
smaller than that of IntelLab sensors, the accuracy is high for
all three data sets as can be seen in Figs. 9, 10, and 11. This
can be exploited to reduce the computation overhead by in-
crementally computing similarity score of increasing accuracy.
As a search request arrives, we first compute an approximate
similarity score according to Eq. 5 for a small subset of the
measurements US of the given sensor, for example, by only
using every 10th sample from the time series. In a second
pass, more samples are added, say every 5th sample, and so
on. This way, a first approximate search result can be very
quickly presented to the user which is continuously refined
the longer the user waits.

We applied this approach to the IntelLab data set by
computing the similarity score on a subset of the date that
contains only every 6th sample, (i.e., 250 data points per day).
This results in exactly the same DOA as the DOA obtained



for the full set of 1500 data points per day, but reduces the
computation overhead to one sixth.

Finally, please note that similarity search can be efficiently
parallelized on a cluster of computers (as used by many
Internet search companies) by partitioning the set of sensors,
respectively their indexed fuzzy sets, and distributing them to
the computers in the cluster.

VI. PROTOTYPE

To further support experimentation with our approach in
realistic environment, we implemented a prototype on an
experimental facility developed within the WISEBED project7.
The facility consists of a projector mounted on top of a table
that projects a video of a smart home onto the table. Using
ray-tracing techniques, a simulation engine renders the interior
of a house including realistic illumination from the moving
sun shining through windows and artificial lighting. Sensor
nodes with light sensors are placed in the projected rooms
that sense the illumination as they simulated day goes by and
form a wireless mesh network. Fig. 8-right shows a photo
of the prototype with two project rooms, namely “Library”
(the region at top left of the photo) and “Meeting Room”
(the region at bottom right of the photo), and four sensor
nodes, two of them placed in the library, and other two in the
meeting room. The projected plots next to the sensors show
the recorded data from the light sensors.

The sensor nodes compute fuzzy sets as described earlier in
the paper and periodically send them to the gateway computer
where they are indexed. The user can then pose a query to
find sensors that are similar to a given sensor.

In the experiment shown in Fig. 8-right, we annotate sensors
with their room, i.e., two sensors (ID:70d5 and ID:7061)
are annotated with “Library”, and one sensor (ID:7115) is
annotated with “Meeting Room”. Now we deploy another
sensor in the meeting room (ID:71fa) and search for similar
sensors. As expected, the resulting rank list contains the other
sensor in the meeting room (ID:7115) on top.

VII. CONCLUSION AND OUTLOOK

We are witnessing the formation of a Web of Things, where
the output of sensors connected to the Internet is published and
mashed up with data and services on the Web to create novel
real-world applications. A fundamental service in the resulting
Web of Things is search for sensors. Instead of relying on
manual annotations (which are often incorrect, inconsistent, or
incomplete), we propose sensor similarity search, where based
on the past output of a sensor, sensors with similar output
are found. We designed an efficient approach to compute a
similarity score for a pair of sensors. All sensors compute
fuzzy sets that represent their past output using only few tens
of bytes. These fuzzy sets are indexed in a data base. Given
the output of another sensor, similarity scores are computed
for each indexed sensor, sensors are ranked by this score
and returned to the user. Using sensor data from three real-
world deployments, we could show the high accuracy of our

7http://wisebed.eu/site

approach. As proof of concept, we built a working prototype
to demonstrate the functionality of our service and to support
experimentation in realistic environments. Building upon those
results, we will explore scalable search algorithms to support
searching among large numbers of sensors in the Web of
Things. Eventually, we also plan to perform a user study to
assess the accuracy of our approach.
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